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FOREWORD

This publication was prepared by the Tracking andCommunications Division

of the NASA Lyndon B. Johnson Space Center (JSC). It fulfills the Interagen-
cy Agreement DTNH22-85-X-07163 between the Department of Transportation (DOT)

and the National Aeronautics and Space Administration (NASA). The initial or

Phase I effort covers the period November 1984 through December 1985. Sig-
nificant tasks undertaken during Phase I were the (1) generation of several

reports and short studies, (2) design, fabrication, testing, and implemen-

tation of a data collection engineering breadboard radar, and (3) analysis
of collected data and conclusions and recommendations derived therefrom.

The main goal of this program is to fundamentally contribute to the devel-

opment of a potentially commercial, practical collision avoidance radar
for automobiles.

Volume I is the technical report consisting of 13 sections covering all
the Phase i tasks.

Volume II consists of the development plan submitted to the Department

of Transportation during Phase I of the NASA/DOT Interagency Agreement

DTNH22-85-X-07163 and five progress reports. The progress reports pro-

vide additional technical or program management detail to that given in
Volume I: Technical Report.
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SECTION1
INTRODUCTION

BACKGROUND

The cost of automobile accidents in death, personal trauma, and property

damage in the United States alone is alarmingly high. A figure for 1982 puts

this cost at more than $80 billion. The Department of Transportation (DOT)
has been sponsoring research for several years aimed at reducing accident

frequency and severity. Many safety innovations in the areas of auto-body

structural design, airbags, braking systems, lighting systems, steering, and

suspension have already been implemented. Nevertheless, accident frequency
and severity has remained at unacceptably high levels.

It is believed by the DOT, others, and us that a system capable of alerting
a driver in a timely fashion to the existence of an impending collision would

have the potential for drastically reducing accident seriousness as well as
frequency.

CANDIDATE SYSTEM

A radar is the leading candidate for such a collision avoidance system. It

is felt that system characteristics such as sufficiently small size, reason-
able price, high sensitivity, and high reliability can be accommodated with

judicious effort given to radar design, development, test, and manufacturing.

The thrust of this project has been directed toward initial system design and
laboratory testing. Since automobile radar collision avoidance systems have

been investigated by previous authors, the logical approach is to attempt to

extend the capabilities of systems already investigated while focusing on

alleviating the problems which have plagued them. To date no truly effective
system has been developed and marketed which can offer a driver/driver's ve-

hicle a warning within adequate time for him/his vehicle to react and avoid

or significantly mitigate the effects of typical urban/highway collisions.
The system techniques and concepts researched in any depth thus far offer a

much too limited performance to be of practical use. Additionally, they
suffer from unacceptably high false alarm rates. The consensus is not that

radar -- whether microwave, millimeter-wave, or micron-wave (lidar) -- is

inappropriate for the task, but rather that the correct radar system designs
and techniques have not yet been adequately developed and applied to this
unique problem.

WHY RADAR?

As currently envisioned, the collision avoidance system must be effective

in several areas. It shall (1) detect large objects at a distance, e.g.,
a car, truck, or motorcycle at typically 300 feet (or to be determined

(TBD)); (2) determine the distance to this object; (3) determine some use-

ful measurement of some component of the object's velocity with respect

to the radar; (4) be capable of tracking multiple objects simultaneously;
(5) observe a horizontally-oriented sector, or scan, of at least several

highway lanes; (6) only give a warning when a collision trajectory is
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determined; (7) operate through fog, rain, snow, hail, sandstorm, dust-
storm, or other inclement weather conditions; (8) be a technology that can
be miniaturized enough to be compatible with midsized automobile equipment
space; (g) be reasonably priced whenthe technology is brought to maturation
and the system is produced in consumerquantities; (10) be effective and
reliable; (11) be safe. Radar is the only technique which presently has
a hope of simultaneously meeting these requirements.

OBJECTIVES

The main objective of the Phase I effort was to design, develop, and evaluate
the performance of a potentially commercial radar system which could provide
advanced warning of impending collisions with motor vehicles or other traffic
hazards. A potentially commercial system must use componentsand techniques
which are now, or will be in the future, fairly inexpensive, relatively non-
exotic, and can be massproduced. For example, traveling-wave-tube-amplifier
active array antennas with cryogenically cooled parametric amplifier receiver
modules by nature are an exotic and costly technology, nowand into the fore-
seeable future. On the other hand, a Gunndiode/Impatt diode transmitter
module with a GaAstransistor receiver amplifier represents a lower cost
technology which is becomingcheaper each year coincident with the maximum
performance capabilities of the componentsimproving each year.

APPROACHANDTASKAREAS

The approach taken to this project and the tasks performed were as follows.

ao Literature searches were performed and procurement of many of the useful

documents occurred. Searches covering automobile collision avoidance
devices and biological effects of microwave radiation were the main areas

of concentration. Contacts were made with DOT, university, and independ-
ent researchers to obtain additional literature sources pertinent to the

problems.

b. Geometrically-oriented analyses were performed on the relationships of

targets relative to the radar-equipped vehicle to derive information re-

lated to determining parameters such as range, range rate, angle, angle
rate, and time to impact.

Co A critical review of previous radar efforts was performed internally and
was used to guide decisions relating to selection of the data collection

radar design.

do A review of traffic accident reports was performed to assist in the

determination of radar parameters such as detection distance, area of

coverage, speed of collision objects, etc.

eo A study of weather effects on radar performance was prepared to assist in

determination of possible carrier frequencies, modulation methods, detec-

tion distance, and disruption of radar operation during inclement weather
conditions.
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f•

g•

h•

i •

A report was prepared addressing preliminary considerations of the

collision trajectory models and associated decision logic.

A data collection radar and instrumentation system were designed, fabri-

cated, and installed on a test vehicle. They were used to collect engi-
neering data useful for determining system operation and target return

signal information. Static tests primarily were performed• A limited

amount of dynamic, or moving radar, tests were conducted.

The test data were recorded, then analyzed off-line using equipment in

the radar data processing facility, which consists of microcomputers,

analog-to-digital conversion equipment, software packages, video display

equipment, and ancillary equipment•

Conclusions and recommendations for future development efforts based on

items a through h were derived.

I-3





SECTION 2

PRELIMINARY DESIGN REQUIREMENTS ASSESSMENT

INTRODUCTION

A review of the available literature and test results of this previous work

was conducted to establish a 1985 baseline of radar technology. The purpose

of this review is to minimize duplicating previous work and at the same time

strive to determine system characteristics that will eliminate problem areas
of previous systems.

HISTORICAL DATA BASE

The major effort to date for this phase of the program has been the review

and collection of documents relating to historical efforts in implementing
a crash avoidance radar (CAR) to provide automatic braking and/or warning
of impending automotive collisions. A summary of the characteristics of the

various radars either existin 9 or under development in 1980 was prepared by

Kinetic Research for the DOT. • This summary is reproduced as table 2-1 and

is supplemented by information obtained from more recent publications. 2,3
This supplemental information is also contained in table 2-1. The final

entry in table 2-1 is the design goal performance characteristics for the

NASA Phase 1 experimental radar which was used for data collection only.

A literature search revealed that relatively many documents have been pub-

lished in the last 15 years relating to the utilization of radar for auto-

motive crash avoidance. A listing of the majority of the publications

collected and reviewed in this effort is contained in the bibliography.

A comprehensive review of these documents reveals some interesting facts.

During the First 10 years of automotive radar research the only serious

development efforts were directed towards one-dimensional radar systems
(range and range rate). The ten radars analyzed by Kinetic Research I were

of this type. False targets were inhibited by a combination of reducing the
maximum detection range as a function of steering angles and velocities and

reducing the average coverage volume to a 5-degree cone or less in the

forward direction of the vehicle. Although it was recognized by several

investigators that improvements could be made in the ratio of false-to-real

target detection process by the addition of the capability to measure both

the forward and lateral components of range and velocity, there appears to
have been only one serious development effort to date. 3 The Nissan Motor

Company, Kyoto, Japan, is designing and testing a stereo radar system that

measures the lateral component of velocity by using two pulse-Doppler radars

and detecting the phase difference of the two Doppler signals.
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TABLE2-1.- AUTOMOTIVERADARSYSTEMS

Description Nissan-Mitsubishi Benz-Sel

System

Principle

Range

Accuracy

Relative speed

Accuracy

Sensitivity - Pr/Pt

Pulse Doppler/stereo

5 to 127 m

Im

+ 1 to + 127 km/h

l km/h

-78 dB

FM-CW (sawtooth)

10 to 100 m

± 2.5 m

- 30 to 160 km/h

+ 2.5 km/h

Antenna

Number and type

Beam width

Polarization

1 parabola/2 stereo

H3.4 o, V6 o

45°

2 parabola

H2.5 °, V4 °

V

Tx and Rx

Main oscillator

Frequency

Output power

Pulse width

Receiver

Range cut by steering

angles

Notes

Supported by

Started in

Gunn

24.15 GHz

20 mW

20 ns

Homodyne

Contained in program

MITI

1974

Gunn

35 GHz

20 mW

CW

Superheterodyne

Contained

Benz-Sel plus
Government

1975
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TABLE2-1.- Continued

Description Telefunken VDO

Principle

Range

Accuracy

Relative speed

Accuracy

Sensitivity - Pr/Pt

Pulse

5 to 120 m

+ 1 m

150 km/h

± 3.6 km/h

Pulse

5 to 120 m

± i m

130 km/h

130 km/h

Antenna

Number and type

Beam width

Polarization

2 parabola

H2.5 °, V4 °

V

2 parabola

H2.5 o, V4 o

V

Tx and Rx

Main oscillator

Frequency

Output power

Pulse width

Receiver

Range cut by steering

angles

Notes

Supported by

Started in

Gunn

35.6 GHz

300 mW

20 ns

Superheterodyne

250 kHz PRF

Contained

Bosch-Telefunken plus

Government

1975

Gunn

35 GHz

200 mW

30 ns

Superheterodyne

1.5 mW average

Contained

BMW-VDO plus
Government

1968
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Description

TABLE 2-1.- Continued

Bendix CA Research RCA

System

Principle

Range

Accuracy

Relative speed

Accuracy

Sensitivity-Pr/Pt

Diplex

30 to 75 m

Pulse, gated

6 to 96 m

FM-CW

6 to 30 m

0.2 m

0 to 60 km/h

2.5 km/h

Antenna

Number and type

Beam width

Polarization

i parabola

H2.5 °, V4 °

45°

H1 °

45 °

2 printed

H3 °, V5 °

45 °

Tx and Rx

Main oscillator

Frequency

Output power

Pulse width

Receiver

Range cut by

steering angles

Gunn

36 GHz

25 mW

730 ns

Homodyne

Contained

Gunn

24 GHz

I00 mW to 2.5 W

25 ns

Gunn

17.5 GHz

20 mW

Homodyne

Contained

Notes

Supported by

Started in

(Independent) (Independent) (Independent)

1971

2-4



Description

TABLE

Sperry

2_io_ Continued

British Rashid

S_vstem

Principle

Range

Accuracy

Relative speed

Accuracy

Sensitivity-Pr/Pt

Base-band

45 m

0.1 m

FM-CW (sawtooth) FM-CW

Antenna

Number and type

Beam width

Polarization

3 dipole

H2.5 °

2 parabola 1 dielectric

lens

Tx and Rx

Main oscillator

Frequency

Output power

Pulse width

Receiver

Differentiating

antenna

Base-band

radiation

Super-regeneratlve

receiver

Gunn

41.8 to 33.4 GHz

Sweep of 0.25

15 ms

Gunn

X-band/K-band

Notes

Supported by

Started in

DOT

1974

Lucas (Independent)

1970
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TABLE2-1.- Continued

Description Toyota Arno

System

Principle

Range

Accuracy

Relative speed

Accuracy

Sensitivity-Pr/Pt

FM-CW (triangular)

3 to 60 m

0.5 m

± 60 km/hr

5 km/hr

Narrow dc pulse

Antenna

Number and type

Beam width

Polarization

2 cross beams

2 degrees

Diagonal

Tx and Rx

Main oscillator

Frequency

Output power

Pulse width/PRF

Receiver

Gunn

49.5 GHz

30 mW

750 Hz modulation

Tunnel diode

L-band to S-band

Very small (?)
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TABLE2-I.- Concluded

Description
NASAExperimental Radar (used for Data

Collection Purposes Only)

System

Principle

Range

Accuracy

Relative Speed

Accuracy

Angle (relative)

Accuracy

Phase monopul se

50 to 500 ft

+ 4.5 ft
m

0 to 176 fps

(see data analysis section)

Antenna

Type

Beam width

Polarization

1 waveguide array o_zr3 separate elements used as

functional replacement

H120 ° V4 ° o___rH12 ° V8 °

Horizontal

TX and RX

Main oscillator

Frequency

Output power

Pulse width

Receiver

Gunn

24 GHz

(2 W design) 200 mW-used

20 ns

Heterodyne - 150 MHz intermediate frequency (IF)
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SYSTEMPERFORMANCECRITERIA

In the formulation of the specific system design, consideration will be given
to the following general guidelines provided by the DOT.

a. Capability of the selected system to operate satisfactorily under condi-
tions including rain, snow, hail, blowing sand, etc.

b. Capability of the selected system to be compatible with the requirements
and use of the vehicle, stand the environmental effects, and have elec-
tromagnetic compatibility with the expected environment.

c. Human safety for the highest continuous radar exposure levels that could
occur in real world traffic situations.

do As a minimum the following accident types must be considered in the de-

sign approach: passenger car head-on, rear end, sideswipe, and angle

collisions; single vehicle collision accidents involving trees, utility
poles, nonfixed objects, bridge abutments, and guardrails; and accidents
involving motorcycles and pedestrians.

e. Expected life, size, weight, and estimated original and maintenance
costs, if the system was designed for production quantities of at least

100,000 units, should be consistent with the economic use of the system.

fo The design must consider the location of the components within a typical

midsized passenger car with a minimum impact to the normal day-to-day
operation of the vehicle.

REAL VERSUS FALSE ALARMS

The predominant task is to design a crash avoidance radar which detects haz-

ards with small false-to-real hazard detection ratios. System designs prior

to 1981 were one-dimensional (range and its derivatives) and had no means of
determining angle or lateral position of an object. As a result of the one-

dimensional measurements the warning algorithms were subsets of linear com-

binations of range, velocity, and various mechanical parameters such as

steering angle. Reduction of the false alarm rate was accomplished by limit-

ing coverage volume (beam width), reducing maximum range capability, and

reducing parameter limits as a function of steering angle. Although these
schemes worked to some degree, it forced a trade-off of desirable character-

istics and an overall reduction of the effectiveness of the warning system.

It is felt to be mandatory that targets are tracked in angle in addition to

range. Otherwise, false alarm rates will continue to be high and sensitivity

to targets displaced widely in angle will be low.

Radar Siqnature Discrimination

Several documents have suggested the possible use of target signatures to

discriminate against false targets. There are many disadvantages to this

technique. The first and most obvious is that any target is a real hazard

if it is involved in a collision. Visually the experienced driver recognizes
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a guardrail as a non-hazard by the perception of rate of change of angle and
not because it is a guardrail.

The radar cross-sectlon of an object is determined by the magnitude of the
returned signal and varies as a function of aspect angle, its size, geometri-
cal shape, and its electrical properties such as permittivity. Examplesof
the variation of cross-section magnitude as a function of aspect angle for
a standard sized automobile were presented by E. E. Martin of Georgia Tech5.
Peak-to-mean value variations were approximately 20 dB, and peak-to-minimum
fluctuations ran approximately 40 to 50 dB depending on frequency.

Phase, the other important parameter of radar target signature analysis, was
not measured in these tests, but should exhibit similar fluctuations as a
function of aspect angle. The target signatures would vary widely due to
the manydifferent designs of bridges, guardrails, roadside signs, and such
details as damagedsections, bends, curves, etc. Due to the limitation of
radar resolution and increased complexity of signal processing, it is not
considered practical at this time to use pattern recognition for the reduc-
tion of false alarms. It may be possible though to use the variations in
amplitude and phase as an indication of variation in the aspect angle of
the target which in turn implies lateral motion.

Experimental Evaluations

JSC engineers performed a series of tests on their data collection radar
which in effect evaluated both the phase and amplitude characteristics of the

reflected radar signals. In the period of time from 1975 to the present at

least three systems have been proposed by others that have the potential to

reduce the frequency of false alarms. These systems are unique in that the

measurement of the lateral position component could be possible.

A stereo radar system under development by Nlssan Motor Company 3 appears to

be the only system of this type that has advanced beyond the proposal stage.

The principle of operation of their stereo radar is to measure the phase
difference between two pulse-Doppler radars mounted on the front of the

vehicle. A coherent continuous wave (CW) version of this technique was

fabricated and tested on the JSC antenna range. Preliminary analysis of

the data indicates the technique warrants further study.

The second method as proposed in 1975 by Mark Krage 4 would utilize two 10 GHz

radars and detect lateral motion by measuring the difference of the two Dop-

pler frequencies. A 24 GHz version of this method was assembled in the lab-

oratory and tested very briefly at the JSC antenna test range. The initial
examination of the data indicates that with conventional frequency difference

techniques the time required to detect the Doppler frequency difference is
excessive. A novel circuit was devised that is capable of detecting differ-

ences as small as I Hz. The resulting reduction in detection time was sig-
nificant. To further reduce the detection time a 100 GHz version could be

fabricated and tested. The increase in the operating frequency should reduce

the detection time by a factor of four due to the increase in detected Dop-

pler frequencies.
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The third technique proposed by D. M. Grimes and V. P. McGinn2 would be a
swept-beamsystem operating in the 80 to 100 GHzfrequency region. It was
suggested that the beamcould be swept approximately ± 5 degrees and provide
an angle sensing output to provide lateral or cross-range information. No
details of the suggested implementation approaches were available. However,
a narrow, scanned beamsystem seemsto hold the most promise for high per-
formance if one is willing to accept the increased hardware and signal pro-
cessor/software complexity.

From this brief review of the historical information and other data avail-
able, the conclusion can be drawn that the most promisinq technique for the

reduction of false alarms must include a method of determininq the lateral
components of relative position.

CHARACTERIZATION OF THE ENVIRONMENT

Characterization of the environment is the analysis required to determine the

equations of relative motion of the various targets within the field-of-view

of the radar. Once these equations have been established, they can be used

to determine the required parameters to be measured and the corresponding
measurement accuracy requirements.

The Technical Problem

At first glance, the problem of designing a radar for automotive crash

warning does not appear difficult: simply detect an object in your path

coming toward you and sound the warning. The problem becomes difficult

when you consider the environment in which there is a large number of po-
tential targets most of which present no hazard. A radar "target" is any-

thing which provides a radar reflection. "Clutter" is any radar target

which is unwanted. In the present case, this could be other buildings,
road signs, rain, debris, bridge abutments, guardrails, or even the road

surfaces. To further complicate the problem these clutter objects have the

potential of being a desired target if circumstances should place the object
on a collision trajectory with the radar vehicle.

Therefore, if one intends to blank out clutter through some method, he must

be sure he does not discard true hazards in the process. A radar system can

be designed to provide the following information about the targets it de-

tects: signal strength, range (relative distance), range rate (relative
velocity), angle, and angle rate. The distinction between hazardous and

nonhazardous targets must be made on the basis of some form or combination

of these parameters.

Geometry of the Traffic Environment

This section presents an examination of the geometry and dynamic environment

of traffic situations in order to evaluate the parameters of a radar system

which would warn of impending collisions. The aim here is to recognize rele-

vant considerations and not to evaluate particular systems.
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Relative Geometrical Relationships of Fixed Roadside Targets

Range and angle from the radar-equipped vehicle must be appropriately
defined for discussion. These parameters will be referenced to a radar-

centered, radar-fixed coordinate system. The center of the coordinate

system will be taken to be the location of the phase center of the radar

antenna system. The X-dimension will lie along the radar vehicle's
velocity vector. Y is then perpendicular to the vehicle's motion.

RADAR VEHICLE

-- VELOCITY VECTOR (VR)

•_ _+X

, • ___-'_- ANGLE (e)

_[_ TARGET

Figure 2-1.- Vehicle-centered, vehicle-fixed coordinate system.

Range in this system will then refer to the distance of the target in

question to the origin. Angle will be defined as the arctangent of the
Y-coordinate over the X-coordinate.

RANGE = (Xz + yZ)i/z (R)

(Y/X) (e)

=X

Figure 2-2.- Range and angle definitions.
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For the purpose of determining which of the r_dar measured parameters of

range, angle, and their derivatives would be indicators of potential hazards,

a series of computer-generated plots with various affects were made and are

included as figures 2-3 through 2-7.

These geometrical relationships were studied using a computer simulation to

derive a preliminary set of required measurement accuracies (table 2-2).

A copy of the report is included as an appendix.

TABLE 2-2.- ACCURACIES DERIVED FROM ELEMENTARY ANALYSIS

Strictest design tolerance Loosest design tolerance

Range .005 ft 15 ft

Range rate .01 fps 3.8 fps

Angle .1° .1°

These required measurement accuracies were arrived at using simplifications

of the actual expected radar environment. They serve as a starting point for

future considerations of the accuracies actually required for an operational

radar. They should not be considered as the required accuracies for an

operational system.

Radar Spatial Coveraqe

The purpose of the following discussion is to discuss the spatial coverage

for the radar which in turn could be used to calculate the required antenna

pattern. The following statements were derived from previous studies and
reports. They will be presented in this section without proof:

a. Majority of side impacts occur in the region of 30 to 50 degrees.

b. Most benefits are derived from radars in the case of head-on or rear

impacts.

c. Orthogonal impacts occur more frequently at intersections and with
velocities less than 30 mph.

d. Pedestrian accidents occur more frequently in cities and towns with

vehicle velocities less than 25 mph and initial ranges of less than
50 feet.

e. Some radar braking studies in the past suggest that a maximum range cut-

off at 200 feet provides adequate range coverage. Increasing the range

cut-off to 400 feet does not add much and decreasing it to 100 feet re-

sults in a significant loss of benefits. However, these values were

arrived at for simple, non-angle sensing radars. They can only be used

as a starting point for future analysis of the requirements.
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The following will be assumed throughout this section:

a. Velocity extremes are between 176 fps (two cars approaching each other

going 60 mph) and 5 fps (3.5 mph).

b. Targets are assumed to be idealized points (invalid assumption, in

general).

c. The radar vehicle velocity vector is aligned with the phase center of the

radar antenna and the origin of the coordinate system.

To estimate the vertical coverage it is necessary to examine the anticipated
environment. The Bendix Corporation Phase II study conducted in 1976 re-

corded the number of false alarms from an experimental radar over three test

courses and with variations of radar parameters. A significant factor from

the results of this data is the large number of false alarms due to overhead

targets such as overpasses, overhead signs, and bridges. As reported in the

Bendix report 55 percent of all false alarms from their tests were identified

as overhead targets. Smaller percentages of false alarms were attributed to

vehicles on the side of the road, guardrails, and traffic in adjacent lanes.

Although there is a finite number of true targets in the vertical plane

(entrance and exit ramps, etc.), these for the most part are limited to

vertical angles of less than 3 or 4 degrees. Two of the radar parameters
varied in the Bendix studies were maximum detection range and antenna beam

width. The beam widths were 2.5, 4.5, and 10.0 degrees and were fairly

symmetrical in both the horizontal and vertical planes. As illustrated in

figure 2-11, the average number of false alarms increases rapidly as the beam

width and maximum detection range get larger. Note that this was derived for

simple, non-anqle sensinq radar. The general trend of more false alarms

resulting from wider beam widths or coverage areas would tend to hold For

angle sensing, more sophisticated radar. The major difference between angle

and non-angle sensing radars is that the angle sensing radars would presum-

ably have false alarm levels orders of magnitude less than the non-angle

sensing radars. This would arise from the ability of the angle sensing radar
to discard targets that are not on a collision path with the radar-equipped
vehicle.

The limit to which the vertical antenna beam width may be reduced is limited

by the area available to mount the antenna and the degree of difficulty in

aligning the radar boresight. Additionally, a beam width of less than one
degree would be in the range of variations due to the distribution of loads.

The typical height of overhead signs and overpasses is approximately 15 feet.

Comparing the beam spreading as a function of beam width and distance, the

10 degree beam width exceeds this height at 100 feet and the 4.5 degree beam
width at 200 feet. The 2.5 degree beam width is approximately equal to

15 feet at a distance of 300 feet. This correlates very closely with the
Bendix measured data. The trade-off of these factors leads to the conclusion

of a vertical beam width of 2 to 3 degrees.
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Figure 2-8.- Radar coverage diagram.

..........................--

Figure 2-9.- Examples of overhead false targets.
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Figure 2-10.- Examples of roadside targets.

|

i

ANTENNA
BEAM WIDTH
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MAXIMUM DETECTION RANGE
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Figure 2-11.- False alarms as a function of beam width and maximum range.
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PURPOSE AND SCOPE

This document presents an examination of the geometry and dynamic environment

of traffic situations in order to evaluate the accuracies required of a radar

system which would warn of impending collisions. The aim here is to estab-

lish generic requirements and not to evaluate particular systems. Each of

the parameters measurable by a radar system (range, angle, and their deriv-

atives) are discussed in terms of their possible uses in collision determi-

nation. The accuracies required to support these uses are generated. RF
effects shall not be treated in this report.

INTRODUCTION AND BACKGROUND

The National Aeronautics and Space Administration, at the request of the

Department of Transportation, is conducting a study in the application of
radar systems for automotive collision avoidance. Past studies I have indi-

cated that an effective system could significantly reduce the property loss
and personal tragedy associated with automobile accidents. Several candidate

systems have been designed and tested by different organizations, z but to

date the reduction of false alarm occurrences remains a problem to be solved
before a system may be deemed practical.

The designs and breadboards to be generated by this study will be geared

toward solving this problem. Prior to developing these designs, the accura-
cies required of the various parameters it measures must be known, as these

have a major impact on the system design. These accuracies may be determined

by examining the dynamic environment in which the radar operates and estab-

lishing differences in the magnitudes of measured parameters (and the rate
they are changing) for collision courses versus noncollision courses. The

control algorithm which makes the collision/noncollision decision will be

presented in a later report.

PRELIMINARY DEFINITIONS AND ASSUMPTIONS

"Range" and "angle" must be appropriately defined for discussion. These

parameters shall be referenced to a vehicle-centered, vehicle-fixed coordi-
nate system. The center of the coordinate system shall be taken to be the

location of the radar transmitter if a single antenna system is under discus-

sion and the middle of the front of the vehicle if multiple antennas are
used. Unless otherwise stated, the latter location will be assumed. The

X-dimenslon shall lie along the vehicle's velocity vector. Y is then per-
pendicular to the vehicle's motion.

Range in this system shall then refer to the root sum squared (RSS) distance
of the target in question from the origin. Angle shall be defined as the
arctangent of the Y-coordinate over the X-coordinate.

eLANI
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+Y

Figure I.- Vehicle-centered, vehicle-fixed coordinate system.

r

+X

Range_

_- _ Angle = Tan I(Y/X) (e)
r

Figure 2.- Range and angle definitions.

Range rate and angle rate are the derivatives of the respective measurements.
The following shall be assumed throughout this report:

• Measurements are made only in the forward direction.

• Radar detection range is 300 feet. Anything farther away is assumed not
to be in the radar field-of-view.

(Drawn approximately to scale)
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Angular coverage is ± 45 ° from direction of travel. Anything outside this

region is not in the radar field-of-view.

The range at which a decision to warn/not warnmust be made is variable

with the measured range rate.

Range rate extremes are 176 fps (two cars approaching each other going

60 mph) and 5 fps (3.5 mph, no damage likely).

• Unless otherwise stated, targets are assumed to be idealized points.

ACCURACY DETERMINATION TASK

To generate the accuracy requirements for the proposed system, one must de-

fine the tasks the measurements will be required to support. As stated

earlier, the primary task of the radar system is to warn of impending colli-

sions, with special emphasis on reducing to the maximum extent possible the
false alarm rate.

To accomplish this task, it will be necessary to determine not only if the

target's range and velocity are such that the distance to the target is less

than the required stopping distance, but also if the course it is on repre-
sents a collision trajectory. These two different tasks impose different

requirements on the various parameters.

The first task involves establishing a "warning threshold" distance at which

to sound an alarm, based on the measured distance and speed of the target.

In many systems this task will be the major accuracy driver for the range and

range rate measurements. The second task, determination of a collision tra-

Jectory, involves monitoring the behavior of the range and angle measurements

to predict if the present course is an impending collision. This task will

likely be the major driver for angle and angle rate accuracies.

This partioning is true in general, but there are system concepts in which
collision prediction is the dominant driver of accuracy requirements for

range or range rate, as well as angle. For completeness, these situations
will be treated as well.

PARAMETERS

Ranqe and Ranqe Rate

The measured range to a target cannot in and of itself distinguish a colli-

sion trajectory from a noncollision trajectory. Range alone merely specifies
that the target is somewhere on a circle wlth the measuring point at its
center.

_NGE = K
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Of course, we are restricting our measurementsto ± 45°, so a range would

place the target somewhere on the sector depicted in the diagram.

Since the colllslon/noncolllsion decision is not heavily dependent on the

range measurement, the accuracy requirements need not be overly strict. The

use of the range measurement nominally will be to determine if the range to a

target is less than some required threshold, in which case an alarm is to be

sounded. For this reason, the range measurement should be at least accurate

to the average length of a car. Therefore, a 1 o magnitude of 15 feet is im-

posed.

It is possible that stricter requirements might need to be imposed for cer-

tain systems, however. If range rate is generated by differentiation of

range measurements, then range rate accuracy requirements will drive the

range accuracy. In this case, o range is a function of o range rate given by

ORange Rate

ORange -- 2

since two range measurements are subtracted to yield a range rate measurement.

Range rate has an important role in determining the warning threshold, since
the distance required for an automobile to come to a stop (the reference for

declaring a warning) is proportional to the square of the vehicle's

velocity: 3

2
v

Di_an_ _ _op = -
2 pg

where v = vehicle's speed, p = coefficient of friction, g = acceleration of

gravity.

Through this equation we can relate range rate errors to the error in warning

threshold estimate. As with the range measurement, we would want no more
error in the threshold than a car length, or 15 feet. Thus, the range rate

measurement must be accurate to at least 15 fps, or 3.8 fps, 1 o.

This is a relatively mild requirement. Range rate has potential uses other

than determining warning threshold, however. Some potential system concepts
use the difference in range rate measurements taken from two antennas a dis-

tance d apart to determine angle to a target, since the spacing D will cause
the antennas to see different Doppler frequencies (proportional to range

rate) as a function of the target angle. This situation is depicted below.

fd= 2____

fd2 = _ cos (0_)

02
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The effect on accuracy requirements is best described by evaluating a worst

case example. Suppose we wish to evaluate the case of approaching an object

just off to the side of the car from 300 feet away at a speed of 73.3 fps
(50 mph). We will assume d = 5 feet (the typical width of a car). Then
the velocity difference between the two antennas will be

v (cos -cos (e2))

-- 73.3 (I- .99986)

= .01 fps

.01 fps is a very strict requirement. The worst case described is much

stricter than the average case likely to be encountered; however, even as the

scenario becomes more realistic, the requirement eases very little, if one

wishes to make distinctions at a range of 300 feet. Two cars in opposite

lanes (lO-foot separation), each travelling 35 mph, would result in a range
rate difference of only .05 fps, so an accuracy on the order of hundredths of

a fps would still be required•

Anqle and Anqle Rate

Angle measurements and their behavior are quite necessary to the determina-

tion of a collision course. This report will not present the algorithm
developed to make this determination, but typical situations will be examined

to establish the strictest accuracy requirements.

Angle measurements have long been used on shipboard radar systems to indicate

collisions. It is well known that a constant angle combined with a closing
range indicates a collision course. This is true for straight line trajecto-

ries only, but quite a number of practical cases fall into this category.
Any fixed object on or along a straight road section falls into this cate-

gory. Any normal vehicle traffic along a straight road also falls into this
category.

The angle accuracies required to support this determination may be arrived at

by examining the change in angle behavior between an object directly in one's
path and one just to the side of the vehicle, say 3 feet over. For the col-

lision object, the angle measurement is zero and remains zero all throughout
the approach. For the second case, the angle measurement starts at .573° and

grows in magnitude, eventually reaching 90 ° as the car passes the object.

nlml• : :•'': .... :

i • m o • Q m. muo

I

n

a. Angle = 0 throughout approach b. Angle varies throughout approach
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From this case it can be seen that the radar system should be accurate to at

least .5°. However, the situation described is the worst case only for

straight line trajectories. Many driving situations involve potential

collision hazards approaching the radar vehicle along a curved trajectory.

From an accuracy standpoint, the worst case would be as slight a curvature as

possible, since this would result in the smallest angular changes. For this

reason, a computer simulation was run involving a target object beginning at
a distance of 500 feet in the opposite lane slowly curving into the radar

vehicle's lane. The simulation was run twice, one for a collision case and

once for a near miss of several feet. Equal velocities for radar vehicle and

target were assumed. At 275 feet (stopping distance for a car going 60 mph
under normal conditions), the angle measurements differed by .14 °. Thus, to

be able to distinguish these cases, accuracies to a tenth of a degree would

be required.

It should be noted that at 300 feet, two objects need be separated by only

.52 feet to have an angular separation of .1 degrees. Since a car is much

wider than .52 feet, the specific point of the target that the radar tracks

becomes important. But the phenonmenon is an RF effect to be investigated

and really does not influence accuracy requirements.

SUMMARY AND COMMENTS

The arguments presented in this report were designed to arrive at accuracy

requirements for a collision avoidance radar system based on an examination
of the worst cases of normal driving conditions. The analysis herein is

based solely on the geometry of the environment, as this was all that was

required to determine the variations in magnitude that the radar parameters

undergo.

It should be noted that cases can be envisioned which a radar system most

likely could not solve. For instance, the situation depicted below, which
is not entirely uncommon at construction sites:

mm_g

ZZZI

The difficulty here is that the vehicles do indeed follow a direct collision

course until the very last moment, and the radar system has no way of knowing
in advance that the driver intends to turn away at the last moment. Of

course, it could be argued that a warning in this situation is not inappro-

priate, since a slight amount of driver inattention at the last moment can
result in a collision. The point, however, is that situations of this sort
are an odd extreme and are not likely to be encountered with any significant

frequency. The design of the radar system should be geared towards the prac-
tical situations encountered in everyday traffic.
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To summarize, if a radar system were designed around the requirements

generated by this report, the following would be the accuracies required:

Worst case Best case

error error

Range .005 ft 15 ft

Range rate .01 fps 3.8 fps
Angle .i° .1°

These requirements are intended to be a general guideline, dictated by the

geometry of the environment. Actual requirements for a particular system

will depend on how that system processes the various parameters.

The following plots present the results of the computer simulation referenced

in the angle/angle rate section. Two sets of plots are presented, one set

for a collision case and one set for a near miss case. On the trajectory

plots, the radar vehicle path is indicated by the straight line from X = 0

to X = 500. The target path is depicted by the curved lines.
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SECTION 3

TRAFFIC ACCIDENT REPORT ANALYSES' CONCLUSIONS

INTRODUCTION

Traffic accident report data have been used in the past with some limited

success for a variety of purposes relative to the design, development, and

analysis of automotive collision avoidance radars:

a. General guidelines for system design have been formulated, 4.B.7,8,9.13

e.g., minimum range and maximum range of coverage, angular beam width

of coverage, velocities of targets required to be accommodated, and

sensitivity levels for range and angle. Generally only limited use

of the accident data was made by each author. Not all parameters

were derived using accident data. The impact of accident data on

angle-tracking radars has been studied very little.

b. System features such as automatic application of braking versus warning

as well as braking type (skid versus anti-skid) can be assessed against
potential benefits. 4.B,7'B'9.l°

C. Once a system transfer function (radar sensor output plus output pro-

cessing algorithm) is characterized, its potential effectiveness can

be approximated.

d. After calculating the effect of implementing a radar in the environment

described by the accident reports, figures describing potential numbers

of lives saved, accidents avoided, accident severity reduced, and per-
sonal injury lessened can be generated. 4'8'7'B'9'I°

e. Finally, a dollar amount of potential savings to society can be developed

based on lives saved, property damage lessened, etc. 3'4,7,B,z°

SYSTEM SPECIFICATIONS BASED ON TRAFFIC REPORTS

System specifications generated from traffic accident report analyses can be

extremely important to developing an effective collision avoidance radar.

Attempts have been made to develop some of the radar system specifications

from report analyses. It should be noted that these specifications are pre-

sently only starting points for future system development. Additional study

is required. For example, a minimum range before detection of approximately
100 to 200 feet for simple radar has been developed based on cost-effective-

ness because increasing detection range past 200 feet reduces accidents by
only a few percent. 7 The greatest total number of accidents (40 percent)

occurred on roads with 30-35 mph speed limits 2 while the three other cate-

gories (55, 40-50, 25 or less mph) each had approximately 16 percent. Assum-

ing the drivers' speeds were somewhere near the posted speed limit, then

radar operation versus combined driver and target object speed should be

approximately equally sensitive (possibly peaked for 30-35 mph) across the

range of car and collision object velocities. However, if reducing fatal

accidents is the primary concern, then system operation should be optimized
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for vehicle speeds in the 55 mphroad class I (approximately 70 percent of all
fatalities). An urban/rural set of sensitivities might be required for opti-
mumradar operation. These velocity considerations allow a designer to place
requirements on distance to detection and processing time, amongother speci-
fications.

Determination of required beamwidth, or angular coverage, is one of the more
difficult tasks to perform using traffic accident data. Several authors have
attempted to assess the effect of angular coverage on accident prevention/
reduction. The beamwidth arrived at by previous authors determined by per-
centage accidents reduced, etc. has been generally on the order of several
degrees. 4,B.9 However, 360 degree full coverage is the only coverage that

will provide the absolute maximum accident prevention/reduction. Anything
less is a compromise, even if necessitated by practical considerations. By

necessity a coverage area less than 180 degrees, but greater than approxi-

mately 10 degrees, will most likely be used for a practical system. A pre-

liminary review of impact angle indicates that approximately 80 percent of
the accidents occur within ± 75 degrees. 2

While beam widths on the order of several degrees may represent an effective
compromise between hazardous targets detected versus false alarms generated

in these simple radars, more beam width is needed. First, the traffic ac-

cident data bases do not generally contain very accurate accident impact

angle information. Further, since data collection occurs after the acci-
dent, it is understandably difficult to accurately determine the precise

angle of impact (e.g., within ± 2 degrees). Two important nationwide compi-
lations of traffic accident statistics z,2 only show angular breakdowns to

within a 30 degree segment. This is shown in figures 3-1 and 3-2. It is

felt that trying to predict the overall cost savings for radars with beam
widths of, for example, 2.5 degrees compared to 4 degrees 9 is really very

speculative and reads more accuracy into the data than exists. This is

definitely true for nationwide statistics such as National Accident Sampling

System (NASS) and Fatal Accident Reporting System (FARS) data which are based

primarily on police accident reports. 1,2 The limitations of previous studies

should be recognized when attempting to deduce the required beam width For
the radar. For example, one study 4 used an algorithm for collision detection

which was automatically disabled if the steering wheel was turned past some

amount; thus, it did not consider preventing accidents on curved roads or

when the radar-equipped vehicle was turning, precisely when more beam width

is most needed. Merely widening the antenna beam width in such a limited

radar system understandably would not offer much additional protection

either. Thus, one might be led to conclude that additional beam width is not

required, when in fact a better radar design and algorithm is needed. Take,

for example, single vehicle fatal accidents (fig. 3-2). If accidents in the

region ahead of the vehicle are considered, approximately 30 percent is the

best savings in lives that could ever be achieved. If, on the other hand,

you recognize that almost 70 percent of the fatalities occurred outside the

± 15 degree beam width ahead of the vehicle, then one concludes that more

beam width (based on lives saved) should be designed into the radars as it
becomes technically feasible. Additionally, the need for more sophisticated

radars which contain angle-tracking means, multiple target capability, etc.
should be obvious in view of the unsatisfactory results of simple radars.
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Figure 3-I.- Direction of force in passenger cars (reprinted from "National

Accident Sampling System - 1982," DOT-HS-806-530, March 1984).
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Figure 3-2.- Distribution of passenger car occupant fatalities by point

of principal impact (reprinted from "Fatal Accident Reporting
System - 1982," DOT-HS-806-566, May 1984).
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The problem of beam width can also be approached heuristically. Suppose a
radar has a beam width of approximately 2.5 degrees, which has been a com-

monly used value. At 300 feet only approximately 12 feet, or one lane, is
being covered. At 150 feet only half of the laneahead is covered. Con-

ceivably an object could be in your lane at 150 feet, yet not be detected.

Furthermore, it should be unsettling that objects approaching from any angle
outside the lane (or fractions of lane) ahead would not be detected. A good

driver is always alert to objects outside of this narrow region, for example,

in curves, at intersections, and when cars are executing passes or otherwise
changing lanes. It is only reasonable then that more than one lane should be

observed by the radar. The radar would then perform complex surveillance and

tracking functions of many objects, just as a driver does. Just imagine how
dangerous it would be to drive with blinders on so that only about one lane

of traffic straight ahead is all you could see. Two lanes of coverage at

150 feet requires approximately a 10 degree beam width. Twenty degrees would

give about four lanes of coverage (1-1/2 lanes on each side of the lane you

are presently in). Twenty degree coverage is probably a good initial qoal

for automotive radar, but it really is only a startinq point.
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SECTION4
RADIATION HEALTH HAZARDS

INTRODUCTION

In predicting the expected radiation levels for an automobile collision

avoidance radar, several of the quantities of interest are peak transmit-

ter power, duty cycle, antenna pattern, antenna physical configuration,

and the number of effective simultaneous radiators. Since the spherical

spreading loss is inversely proportional to the square of the distance

from the radar, it will be impossible to achieve very high radiation levels

because locating more than a limited number of automobiles in close proximity
with each other is impossible. As the distance between an individual and a

radar increases, the potential hazard diminishes. The purpose of this report

is to present calculations which demonstrate that the radiation levels under

worst case conditions will not be expected to exceed current United States

(U.S.) safe levels of 5 mW/cm2. 12

BIOLOGICAL EFFECTS

Organs and tissues have a structure that is bathed in biological fluids.

This structure is built of fixed molecules that often are electrically po-

larized, while the biological fluids contain ions of dissolved electrolytes

and macromolecules. Under the influence of the electric fields from high

frequency electromagnetic radiation, these polar molecules and ions experi-

ence electric forces whose magnitude is proportional to the product of the

electric field intensity, E, and the charge on the ion or on the polar
molecule, s°

f = qE

where

f = force exerted on the ion or molecule

q = charge on the ion or polar molecule

E = vector electric field intensity (volts/meter)

These induced forces lead to current flow in the case of the dissolved ions

and consequently to joule heating of the biological material. The rapid al-

ternating electrical forces on the immobile structural molecules may cause

them to vibrate or to rotate, which in turn leads to heat production. Addi-

tionally, the electric field-induced forces may change the spatial distribu-

tion of the polar molecules from a random orientation to an orientation

aligned with the electric field.

The biological effects caused by radiation heating are called thermal

effects; when a biological effect cannot be attributed to heating, it is
called a nonthermal effect. Only thermal effects will be considered here.

Thermal effects in the microwave region (f > I GHz) are presently associated
with exposure levels greater than 10 mW/cm 2, while nonthermal effects are
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generally associated with exposure levels less than 10 mW/cm 2. These

exposure limits are called threshold limit values (TLV's).

These TLV's refer to the radio frequency (RF) and microwave radiation in the

Frequency range from 10 KHz to 300 GHz and represent conditions under which
it is believed humans may be repeatedly exposed without adverse health

effects. Table 4-1 _° presents TLV's which were selected to limit the average

whole body specific absorption rate (SAR) to 0.4 W/kg in any 6-minute period

(.1 hr).

Frequency

TABLE 4-I.- RADIO FREQUENCY/MICROWAVE THRESHOLD LIMIT VALUES

Electric field Magnetic field

Power density strength squared strength squared

(mW/cm 2) (V2/m 2) (A2/m 2)

10 kHz to 3 MHz

3 MHz to 30 MHz

30 MHz to 100 MHz

tOO MHz to 1000 MHz

I GHz to 300 GHz

100 377,000 2.65

900/f 2. 3770 x gOO/f 2" g00/(37.7 x f2,)

I 3770 0.027

f*/100 3770 x f'/100 f*/37.7 x 100

10 37,700 0.265

• f = frequency in MHz

EXPECTED POWER DENSITY LEVELS FROM THE ANTENNA

Power density levels in the vicinity of radiating sources are functions of

several parameters such as effective radiated power, ERP, peak power, Ppeak'

average power, Pavg' antenna gain, G (O), and others.

The gain of the antenna in the direction of the main lobe can be approximated

by the following equation.

4, (4-1)
Imax -

0A0 B

where

Imax = maximum directive gain

0A = azimuth beam width (radians)

0 B : elevation beam width (radians)

If these parameters are converted to degrees, the gain expression can be

expressed as follows:

41253
Imax -

0A0 B

(4-2)
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For the case of the prototype radar's standard gain horn antenna,

41253
lmax----414

9.5X10

lmax (dB) = 26.1

Regulations for the protection of workers and members of the public from the

harmful effects of microwave radiation have been promulgated in numerous

countries around the world. In the United States, the Occupational Safety

and Health Administration (OSHA) established a maximum level of 10 mW/cm 2

incident electromagnetic power density for frequencies of 10 MHz to 100 GHz,

inclusive, averaged over a 6-minute period. No distinction is made between

pulsed and continuous radiation In the standard. I° Since we are dealing with

averaged power, for pulsed radars, the peak power, pulse repetition rate, and
the pulse width must be known in order to determine if the radiation stand-
ards are met.

The power density at the aperture plane is determined from the physical

dimensions of the prototype pyramidal horn antenna* and the average power

transmitted. This calculation also assumes that the power is uniformly
distributed across the aperture.

where

Pavg Ppeak × PRR X PW

Pavg = average power, watts

Ppeak = peak power, watts

PRR = pulse repetition rate, pulses/sec

PW = pulse width, seconds

For the test radar the following power levels are calculated.

(4-3)

P
avg = (2 watts_ 100 K pulses/( _ 9sec)j(  2o×1o

= 4mW

Now if the physical aperture and electrical aperture are assumed to be equal,

area = 3.5" X 4.0" = 141 n2_90 crn 2

*A pyramidal horn aperture was chosen because it represents the antenna

structure used in data collection and because it is fairly representative
of future possible antenna apertures.
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The power density at the aperture plane is calculated as follows.

( 4 m___W_W1 = .044 mW)cm 2PD=
\ 90 cm 2]

This calculation indicates that the power density at the aperture place is

on the order of five times the _oposed Union of Soviet Socialist Republics
(U.S.S.R.) level of .01 mW/cm 2.

In order to calculate the power density at various field points the effective

radiated power (ERP) is calculated for an equivalent isotropic source.

It is assumed for this case that the radiation efficiency of the antenna is

100 percent, i.e., all of the power, Pavg, is radiated. W The ERP will be

determined for the antenna using the following equation.

ERP = Imax X P = 1656 mW
avg

(4-4)

The power density at various distances from the isotropic source (1656 mW in

the direction of maximum gain) can now be obtained by applying the spherical

spreading loss factor. One valid point for comparing power density for an

antenna is the far field distance (FFD) given by the following formula.

where

= wavelength = .0125 m (f = 24 GHz)

D = aperture diameter E - plane = .1 m

2X 102_ =r' D= ( -/.% / 160¢m

For the pyramidial horn antenna the ERP isotropic source will be located ap-

proximately 57 cm behind the physical aperture plane as shown in figure 4-1.

The far field point location would be approximately one meter from the aper-

ture plane. The power density at the far field point is calculated as
follows.

PD=
1656 mW

4n(160) 2

-- 5.14 × lO-3mW/crn 2

_Actual efficiencies can run only as high as approximately 85 percent.
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Figure 4-I.- Location of ERP sources.

It is clear from the previous calculation, providing system parameters remain
fairly constant, that no adverse radiation safety problems will result from

exposure to a single radiating source. This is also true if part of the hu-

man body is placed at zero inches from the antenna; in other words, right

against the aperture. The power density at the aperture plane was shown to
be on the order of .04 mW/cm _. This does not answer the question of the

effect of additive power from multiple sources which is the topic of the
next section.

EFFECT OF MULTIPLE RADIATORS ON RADIATION HAZARD LEVELS

If a person is exposed simultaneously to radiation of several different fre-

quencies or multiple sources at the same frequency, then in order to stay

within the recommended exposure limits the sum of all the sources must fall

below the allowed "safe" exposure level. A worst case condition is proposed
as follows.

First, multiple radiators will be lined in a string by positioning the auto-

mobiles end-to-end in an infinite string, as shown in figure 4-2.
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T = target being irradiated

r = distance from first radiator to target (cm)

1 = spacing between radiators (cm)

Figure 4-2.- Multiple radiators in infinite string.

The power density at the target, T, is the sum of the power densities radia-
tion from the individual radiators assuming no scattering loss. Phase coher-

ence of waves in space is also assumed; this is the worst case. The total

power density is computed using the following convergent power series.

ERP I (4-6)
PDT - 4n

o"= (r + li)2

where

The sum of the series in equation 4-6 is finite and bounded above.

bound given by equation 4-7 is derived in appendix A.

PD T : power density at target from sum of radiators

ERP = effective radiated power

r = distance from first car to target

I = spacing between radiators (constrained by physical length of
automobile

The upper

ERP (1 7)UB- 4--n 2+-- 412
(4-7)

Next, the power density at the target, T, is determined for multiple infinite

string radiators (simulation of a large traffic circle). The number of mul-

tiple string radiators is constrained by the physical width of the automobile
on which the radar is mounted. It is assumed that the automobiles are

arranged in an N-sided polygon. The polygon is approximated by the circle

shown in figure 4-3. N is assigned as the number of infinite string radia-
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tors that are co-located and irradiate a target located at the center of the
N-sided polygon. The power density, PD, resulting from the multiple string
radiator is given by

PD = N × PD T (4-8)

As a direct result of the physical dimensions of the automobile limiting the
number, N, of infinite string radiators for a given target distance, r, the

limiting value of the target power density is zero (see appendix B).

J
J

Infinite string radiators

PD

PD

PD =

PD T --

N =

W =

= pD T x N

power density due to multiple infinite strings

power density at target, T, due to one infinite string

number of infinite strings (integer value of 2nr/w)

width of automobile

Figure 4-3.- Radiation geometry for multiple infinite strings.
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An upper bound for target power density resulting from multiple string radia-
tors is calculated as follows.

where

N

UB

UB
InS

UB = Nx UB

= number of infinite string radiators

= upper bound single finite string radiator

= upper bound multiple infinite string radiator

(4-9)

_B is a simple upper bound and not a least upperIt should be noted that U ms

bound. Therefore, the actual limiting value of the target power density for

a fixed N will be somewhat less than the calculated upper bound.

A simple Fortran program (see appendix C) was written to generate the exam-
ples. Table 4-2 presents two examples for two N values.

TABLE 4-2.- EXAMPLES INTERSECTION MODEL

Fixed constants

P = 4 mW
avg

Gins_ = 26.6 dB
ERP = 1656 mW

i = i00

All values given in mW/cm 2

N r (em) 1 (em) PD v PD UB

18 609 609 5.84 × 10.4 1.05 × 10.2 1.6 × 10 1

4 107 609 1.197 × 10.2 4.8 × 10.2 4.8 × 10 .2

The first example covers the case of long strings of cars coming together
at an intersection. Next, consider a large parking lot filled with auto-

mobiles. The cars are arranged so that the maximum accumulation of power

occurs at the geometric center of the parking lot. As in the previous exam-

ple, it is assumed that there are no effects from shadowing or scattering and

that the power from each source is additive at the center of the parking lot.
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The power density at the center of the parking lot from a single radiator in
the ith annular region is given by the following equation (fig. 4-4).

ERP
X. - (4-10)

4n (r + i 1)2

where

X_= power density from single source in ith annular region

The number of cars in the ith annular region is given by the Following

equation.

2n(r + il)
N.- (4-ii)

t W

where

w = width of the automobile

Multiplying equations 4-10 and 4-11 yields the total power density at the

center of the parking lot resulting from all radiators located in the ith

annular region.

PD. = N.X.
1 1 I

ERP

2w (r + i 1)

(4-12)

Now the power density at the center of the parking lot filled with cars can

be computed by summing equation 4-12 over n values if i, as given below.

ERP__ _. 1 (4-13)
PD- 2w (r+il)

i=0

A simple Fortran program (see appendix D) was written to calculate the power

density at the center of a one mile diameter parking lot. Table 4-3 presents
the results of this calculation.

TABLE 4-3.- EXAMPLE PARKING LOT MODEL

ERP = 1656 mW

! = 20 feet (609.6 cm)

r = 3 feet ( 91.44 cm)

w = 6 feet (182.88 cm)

n = 132

PD = 0.0885 watts/cm 2
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C

C

r =

l =

n =

= center of parking lot

distance to first annular region

width of annular region

number of annular regions

Figure 4.4.- Radiation geometry for circular parking lot.
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CONCLUSIONS

Calculations to determine radiation hazards resulting from operating the

radars indicate that no problems would result from radiation exposure. It
must be emphasized that it will be necessary to make these calculations each

time the radar spectral, power, or antenna characteristics are changed.

The results of this analysis also indicate for multiple string radiators sim-

ulating a traffic circle that the power density at the target is well below
present American National Standards Institute (ANSI) standard. The second

example simulating a large parking lot demonstrates that the power density

levels do r,ot exceed present safety standards.
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APPENDIX A

CALCULATION OF AN UPPER BOUND

FOR EQUATION 4-7

PRECEI:)IIQ _ BLANK NOT FILIIED

i_Z._." _ NI_NIION_.t¥ BLANK
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Now let S : Sn + Rn

where

ERP
S = PD T - 4n

y 1
, 0 (r + l i) 2

- _+4n (r + I i)2l'-----I

4n i=l 1

(A-l)

(A-2)

Sn = n th pa_ial sum

Rn = remainder = _ f(i)
n+l

This remainder is calculated as follows. 7 Using the integral test for
infinite series

Let p = 2

1
o < IRnl= __ -- < dxP

m-=n+l m n ×

(A-3)

_ 1 1[Rn[ < --_ dx = -
rl x n

From this result, we can calculate an upper bound for the sum S, i.e.,
for n = 2,

(A-4)

ERPI11( I 1)]SUB < -- + 1 + - + -

E [1 714n _ + --412

(A-5)

_ECEDtNG I:_G_ BLANK NOT FILMED
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APPENDIX B

POWER DENSITY OF THE INFINITE STRING

_C, EI)_Q P_G.E__._,LJkNXN,_TFI_E'D

_JNf[NI"ION/ILL¥ BLANK
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The power density of the infinite string is inversely proportional to r z as

indicated by the following equation

I')PDT = f 7
(B-I)

The number of infinite strings N is directly proportional to r. Since the

power density at the target resulting from the multiple string radiators is

N times PDT, the PDms becomes a function of 1/r. Now if we let r get large

without bound, PDms diminishes to zero, i.e.,

lim PDms _ 0 (B-2)

r -_ (_

__.=3N_INBONkLtl BLANK
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APPENDIXC

PROGRAMCOMPUTE

,-:';,s.-:,:._:..,_._F'_ BLANK NOT F_UlUiEI>

[_AGI__-_OJ NIENIlONALL¥ BLANK
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100

150

110

120

130

140

160

10

200

program compute

pi=3.14159265

wrlte(*,100)
_fformat( ' Input length of series to compute: ' )

write(*,150)

format( ' format: I3 ')

read(e,110) n

format(J3)

write(*,120)
format( ' Input (p)ower, (r)adius, and (1)ength : ')

write(*,130)
format( ' format: 2F6.3,13 ')

read(*,140) p,r,l

£ormat(2f6.3,i3)

write(*,160) p,r,l
' input radius = 'format(///,' input power : 'f10.5,/,

+ £I0.5,/,' input length = ',15,///)

sum=1.0/(r=r)

do 10 i=1,n

sum=sum + 1.0/(r + I*i)*'2

continue

write(*,200) p*sum/(4.0*pi)

format(///,' And the sum o£ the series is ...',e15.5,/////)

stop

end

pAGE___I NT£N_IONALLI
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APPENDIX D

PROGRAM POWER

PI__ PAGE BLANK NOT FILIMEO
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160

I0

rogr_m power
ea± ±,w

pi=3.14159265

write(*,100)

i00 format( ' Input length of series to compute: ',\)

write(*,lS0)

150 format( ' format: I3 ')

read(*,ll0) n

Ii0 format(i3)

write(*,120)

120 format( ' Input (p)ower, (r)adius, and (1)ength : ')

write(*,130)

130 format( ' format: 3FI0.3 ')

read(*,140) p,r,l

140 format(3fl0.3)

write(*,160) p,r,l

format(///,' input power = ',f10.5,/,' input radius = ',

+ f10.5,/,' input length = ',f10.5,///)

sum=l.0/r

w=182.88

do i0 i=l,n

sum=sum + 1.0/(r + l'i)

continue

write(*,200) n,p*sum/(2.0*w)

200 format(///,' Power density for n = ',i5,' is ',e15.5,/////)

stop
end

PREC¥.D_Q I_GT. BLANK NOT FIl._e_"O
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SECTION 5

MODELING AND ACCURACY CONSIDERATIONS

INTRODUCTION

This document provides details of a decision logic in support of the devel-

opment of collision avoidance radar technology; however, until the hardware

and software system is in place to permit qualification of the system per-

formance on actual candidate collision target objects, these developments

must necessarily be taken as preliminary. Included herein are the decision

logic objectives, preliminary collision avoidance trajectory models, and the

associated collision avoidance decision logic developed over the previous
several months.

DECISION LOGIC OBJECTIVES

The modeling objectives are summarized as follows:

Support the development of a collision avoidance radar system via effective
determination of

ao Underlying governing models including critical model variable character-

istics (e.g., determination of deterministic and stochastic nature of
the variables involved in the model decision logic, their distributional

characteristics, model sensitivities, etc.)

b. Expected model performance characteristics relative to

1. A wide variety of accident configurations

2. Differing models/varlables accuracies

More specifically, the above support decision logic objectives are summarized
as follows:

a. Determine underlying mathematical models governing

1. The minimum stopping distance of the sensing vehicle and the target
vehicle or object

e The critical crash threshold (e.g., the minimum braking/warning

distance, velocity combinations, distances, directions, differing
angular approaches, and/or derivatives of the same) required for
collision avoidance determination

bo Determine the influence of the stochastic variables comprising the under-

lying models with particular considerations for the distributional char-
acteristics of

1. The target cross-sectional backscatter

2. The estimated range between the sensing and target vehicles (objects)
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3. The estimated received power

4. The angle between the sensing vehicle and target

5. Others (e.g., the forward and backscatter interference resulting, for
example, from inclement weather)

The materials herein initiate, at best, necessary front-end model development

in support of these objectives; critical limitations of these developments
and the challenge for future developments are in the area of the extendabil-

ity of models (no small task in view of the large variety of target types to
be confronted).

EQUATIONS RELATING APPROACH TO TARGET

Linear motion only is considered. Accelerations considered are in the

direction of motion only. No transverse accelerations are considered.

Key to the decision logic development is an understanding of the minimum

distance required for a vehicle to stop once braking occurs (in particular,
this will be needed to determine an alarm threshold for when to sound a

warning). Consequently, it is well-known that the minimum distance for

a vehicle to come to a complete stop is given by

X -- V_/2 glas

where Vo is the velocity of the vehicle at the time the braking occurred,

g (= 32 ft/sec 2) is the acceleration due to gravity, and _ is the coef-

ficient of friction. It should be mentioned that _s should be the coef-
ficient of static friction provided

a. There is no sliding between the tires and road.

b. Rolling friction is negligible.

c. The maximum force of static friction operates because the problem seeks
the shortest distance for stopping.

d. The correct braking technique required is to keep the car just on the

verge of skidding.

In case the surface is smooth and the brakes are applied fully, sliding may

occur. In this case, the coefficient of sliding friction, _, should replace

that of static friction and, as a result, the distance required to stop is

seen to increase since, typically, _s > _"

To structure the situation of an approach by the sensing vehicle upon a tar-

get, consider the situation whereby two vehicles are approaching one another

at differing speeds and at time-dependent (i.e., changing) bearings relative

to one another. The emphasis in the remainder of this report is on the
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derivation of the decision logic for collision avoidance. Reference

throughout is to figure 5-1 which depicts the geometry of the situation.

PC h0

4}t

x2

ht Ib0

12

f

h t X1

Rt 2t

Ro

a.

b.

1
1

Figure 5-I.- Collision course geometry.

Earth fixed reference frame is used.

The notation utilized in figure 5-I is as follows:

l, = length of vehicle #I

l_ = length of vehicle #2

Ro = range between vehicles at time to

Rt = range between vehicles at time t
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0 o

0t

@o

@t

ho

= bearing of vehicle #2 from #I at time to

= bearing of vehicle #2 from #1 at time t

= bearing of vehicle #1 from #2 at time to

= bearing of vehicle #1 from #2 at time t

= offset of vehicle #2 from path of #1 at to

h t = offset of vehicle #2 from path of #1 at t

_ _._

t

VI_ V 2 =

offset of vehicle #1 from path of #2 at t

ground velocities of vehicles #1 and #2, respectively

(also functions of t in the forthcoming dicussion)

It
= component of velocity of vehicle #1 parallel to the

path of vehicle #2 at time t

V2 t = component of velocity of vehicle #2 parallel to the

path of vehicle #1 at time t

X I

X2

PC

= distance of vehicle #I from potential collision point

= distance of vehicle #2 from potential collision point

= potential collision point (in general, the vehicles may pass

through this point at differing times and without colliding

From the above notation, a key relationship is that of the quantity dRt/dt = Rt

which is seen to result in the following (using Rt=ht/sm8 t=ht_0t):

dR:dr:(dR dOt)(d0'dt)•(dR'dht)(dhtldt)
-- htcscOtcotet_} t -t- _ltcscO t

or

Equation 5-1 is of interest in a theoretical sense only. It is not used

in the estmation of Rt since Rt is completed using successive range meas-
urements.
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FURTHER DECISION LOGIC DETAILS

The minimum stopping distance between vehicle #1 and vehicle #2 prior to

collision, assuming both drivers brake simultaneously, is given by*

where

and

12

= driver reaction time plus mechanical braking time of
vehicle #1

= driver reaction time plus mechanical braking time of
vehicle #2

= radar system delay time (i.e., time delay due to radar

circuitry plus system computing time

V I = the velocity of vehicle #1 at time braking occurs

V2 = the velocity of vehicle #2 at time braking occurs

a=thesignofcos(t)t+et)(i.e.,a= -lor+l)

e.g., a = + 1 foroblique intersecting paths, and

a = - 1 foracute intersecting paths

(5-z)

(I -- -I

h #2

Path #I

a = +2

Path #2

Path #1

*See the section on further discussion of the "alarm" threshold for

a detailed discussion of the meaning of RM.
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If braking is not simultaneous, e.g., vehicle #2 brakes A seconds after

vehicle #1, then RM would be altered by the add on amount C2 where

C2 -= (V2A + a2A2/2) cos (_t + 0t)

where a_ is the acceleration (deceleration) of vehicle #2 (also not that O_

and 0_ in equation 5-1 would be replaced with _+A and e_+ A respectively).

Similarly, if vehicle #1 brakes A seconds after vehicle #2, then RM in

equation 5-I would be altered by the add on amount C 1 where

C I = VIA + aiA2/2

and where aI is the acceleration (deceleration) of vehicle #I. Note also

that aI, as, VI, and V 2 in C I and C2 may vary with time. Whether a hardware

and software system can be structured with enough sensitivity to incorporate

in adjustments for accelerations (decelerations) as discussed above is, yet,

another matter; indeed, a slight increase in the frequency of monitoring the

velocities of the two vehicles may prove to be more accurate than attempting

to incorporate in the various accelerations (decelerations).

From the radar time delay equation,

where

t R --

R =

C =

R -- ctR/2

time delay between transmitted and received signal

the radar target range

the propagation velocity

the distance R t at time t may be estimated (detailed below).

the use of the radar range equation

From this and

Pr = (PtG2X2o)/(64n3 R 4)

the backscatter cross-section, o, may also be estimated (which is key to

assessing the decision logic performance on differing target types). In the

above, Pt is the power transmitted from the radar, Pr is the power received

back to the antenna from the target, G is the antenna gain, and _ is the

5-6



wavelength of the transmitted signal. With these, the following decision
logic is conceivable:

SEQUENCE I

.

2.

3.

4.

5.

Pulse is transmitted from radar with known power Pt and velocity c

Clock time t̂i of transmission is sent to microprocessor

A

Signal echo off target object with power P is received back at antenna

Clock time _ of reception sent to microprocessor

The boresight angle
A

0tfto the target is sent to microprocessor*

SEQUENCE II

1. Microprocessor computes:

A A A

a. R = (tf- ti) c/2

A A
b. _ from R and P (or from table look-up)

A A A ^

c. Offset distance htf (computed from relatmnahip) h_ = R_ s_0tf

2. (R, Pr' o, tf,etf,htf)Is stored temporarily in microprocessor

SEQUENCE III

1. Sequences I and II are repeated to obtain

Microprocessor computes:

a. R R)/tt f ^---- -- -- tf

b.

_---- (_tf-- _tf)/(At'f - tAf )

• (^, ^)
e---- Otf--etf / 'f -- tf

, A, later time t'f." Pr' o , at a

o

Co
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3. Decision logic (discussed below is exercised based on table look-up for

,h, 8, ,

tf

computed from a pre-selected moving window.

With the above, then, a possible decision logic is given below (reference the

notation detailed in the previous sections):

^

I. If R _ O, the system remains passive.

2. If R < O, the following is done:

A ^

a. If (e, 8) ( Io, for a to be determined region Io in 2-space, the

system remains passive.

^ A

b. If (e, 8) ( Io, then the following is checked:

^

If Rp < RM, a warning is sounded; otherwise, the system remains

passive.

A A

NOTE: Rp = Rtcoset

DISCUSSION OF INTERVAL Io

From a fixed point t = to in time, let

tll =

tlF =

t2i =

t2F =

time required for front-end of vehicle #1 to reach

the potential collision point, PC.

time required for rear-end of vehicle #1 to reach PC.

time required for front-end of vehicle #2 to reach PC.

time required for rear-end of vehicle #2 to reach PC.

*Variables with a "hat" (e.g., e) are computed from radar sampled values as
opposed to error-free, theoretical values.
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then under constant velocities V, and V_, both assumed to be positive,

tlI=X1/V1, tlF--(XI+ ll)/V 1

t21= X2/V2 , t2F =(X2+ 12)/V 2

Consequently, the logic concerning the interval Io discussed above is
detailed as follows:

If [X 1 /V t __.X2 /V 2 -< (X 1 + 11) / V 1] or

if Ix t /V 1 < (X 2 + 12) / V2 _< (X 1 + 11) / Vl]

then the system checks against a threshold RM (discussed in the next sec-

tion) to see if the following is satisfied:

A

Rp< R M

If so, the system sounds a warning; otherwise, it remains passive. It should

be particularly noted that the above logic assumes V2 is positive; if V2 = O,

then we need only check to see if ht > 0 in which case the object is station-

ary and no warning is necessary. Consequently, the above details the spe-

cifics of theAinter_al Io. It should be noted that, expectedly, Io would be

dependent on et and et; one can, indeed, re-express the above inequalities

as functions of these latter two entities, but it is not necessary since the

logic should work just as well using the above checks.

FURTHER DISCUSSION OF THE "ALARM" THRESHOLD

A key entity in the decision logic laid down above involves the entity RM-

To further clarify this aspect of the decision logic, note that R M is as
follows:

R M += RMI RM 2

5-9



where

and

.M2;_v;os2(or+ot)12g_+v2oslot+0t)(_+)
Consequently,

R M = the minimum distance required for vehicle #1 to come to a stop
I

RM2= the minimum distance, parallel to the path of vehicle #I,

required for vehicle #2 to come to a stop

A A

Hence, the comparison of Rp with RM, i.e., the check for Rp < RM is equiv-

alent to the condition that d < 0 where d is the quantity indicated in the
A

figure below. Equivalently, l_=RMl+l_hen d = 0 (refer to the figure

below).

_P

Vehicle #2

i ......................
Vehicle # 1

Figure 5-2.- Forces acting on a decelerating (accelerating) vehicle.
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ESTIMATION OF PARAMETERS NOT DIRECTLY MEASURABLE

The decision logic assumes knowledge of certain quantities some of which are

not directly measurable by the radar system. Consider the re-annotated ver-

sion of figure 5-I as shown below. Here A and B are the respective positions

of vehicle #1 at times t - At and t, while C and D indicate the corresponding

positions of vehicle #2. The interval At represents the time lapse between

successive radar pulses. The relevant entities directly obtainable from the

radar system are 0t, Ot_At , Rt_At , and R t. Also known is the velocity, V_, of

vehicle #1. The quantities not directly measurable are x,, X_, and V 2.

A

To obtain these quantities, we proceed as follows:

I. ABcan be found from Vt, since _= VtAt.

. The lengths of two sides (_and Rt. At ) and the included angle Ot. At

of triangle ABC are known, hence all angles and side lengths of this

triangle can be calculated using the law of cosines and the law of sines.

3. The angle _ can now be calculated as a difference from a straight angle

of Ot and ZABC; i.e., _ = n - Ot - ZABC.

o Since B-C-is known from #2 above, we now know two sides (Rt andB-C-) and an

included angle (_) of triangle BCD; hence all angles and side lengths of

this triangle can be calculated.

5. Since _ is now known, we may compute V2 = DC/A t.
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6. The angle y can now be calculated as a difference from a straight angle
of ZBDC which is now known; i.e., y = n - ZBDC.

7. We may now calculate _ = n - 0t - y.

8. Since all three angles and a side (Rt) of triangle BPD are now known,

we may now use the law of sines to find

and
X I = Rt sin y/sin

X2 = Rt sin 0t/sin

NOTE: To recall the law of sines and the law of consines, note the

following:

A_

C

Law of cosines:

Law of sines:

cos (A) : (c2 + b_ - a2)/2bc

(sin (A))/a = (sin (B))/b = (sin (C))/c

SUMMARY

Most variables involved in the decision logic are stochastic (e.g., the

range, range rate, cross-sectional back-scatter, received power, etc.) and

will necessarily need to be sufficiently understood in terms of their dis-

tributional characteristics to permit a performance evaluation of the radar

system. As a part of future testing, true values for the estimated quanti-

ties can be compared against the estimated values to permit variance and bias

estimation (i.e., accuracy assessments) of the estimated quantities that go

into the decision logic. In particular, key aspects of future developments

should include assessments of such things as the following:

1. Likelihood of occurrence of specific target types

2. Shape, duration, and phase of the echo from anticipated targets

5-12



3. Variation in echo as a function of radar settings (e.g., differing G, Pt,
_, and c)

4. Variation in echo with change in viewing angle
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SECTION 6
WEATHER EFFECTS ON RADAR PERFORMANCE

INDEX OF REFRACTION FOR AIR

Variations in propagation velocity cause radar to incorrectly estimate range

and range rate because these measurements are derived using propagation
velocity.

The speed of a radar beam propagating through air, or atmosphere, is less
than in free space. This effect is frequency independent below 100 GHz.

The resulting velocity (v) is given by

c (6-1)
V _ m

n

where c = velocity of light in vacua

n = refractive index of medium for propagation

The refractive index (n) for air is a function of temperature (T, °K),

pressure (P, millibars), and partial pressure of water vapor (e, millibars).

The refractive index (n) is calculated 1,2 using

77.6 ( 4810 ×e) 0- B (6-2)n- T P+ T 1 +1

The equation for partial water vapor pressure (e) is2

( 7.5 per (6-3)e=6.11 [10 DPT+237.3!

where DPT = dew point temperature (°C)

Relative humidity (RH,%) can also be used to calculate partial water vapor
pressure (e)2

e

RHxe
$

100

(6-4)

where saturation pressure (es) is found from equation 6-3 when DPT = air
temperature.

An estimated range of values expected to be encountered in the local atmo-

spheric environment around an automotive crash avoidance radar is given in
table 6-I.
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TABLE 6-1.- EXTREME VALUES OF CLIMATE PARAMETERS

Parameter

Pmin

Pmax

Tmin

Tmax

e min

e max

Value

600 mb

1050 mb

-40°C (= -40°F = X33°K)

+79°C (= +175°F = 352OK)

0.0 mb

456 mb

Condition

12,000 ft w/depression overhead

sea level w/high pressure front overhead

deep winter, northern U.S.A.

hot summer; at road surface, U.S.A.

relative humidity = 0%

relative humidity = 100%, T = +7g°c

Table 6-2 shows extreme values of n as calculated from equation 6-2 using the

range of values from table 6-I.

TABLE 6-2.- RANGE OF VALUES FOR REFRACTIVE INDEX (n)

lln

.ggg868

.ggg681

.gg8398

Refractive index (n)

1.000132 (min.)

t.OOO3tg (avg.)

1.001605 (max.)

Parameter conditions (P, T, e)

P = 600 mb, T : 3520K, (minimum n)

e = 0.0 mb (relative humidity = 0_)

P = 1013 mb, T = 288°K, e = 10 mb

(standard atmosphere at sea level, average

value for n)

P = 1050 mb, T = 352°K, e = 456 mb

(100% relative humidity) (maximum n)

Using the values of n from table 6-2, variations in propagation velocity can
be calculated. A correction factor can be used to calculate the deviation

from free space values. The correction factor is 1/n. To use this factor
to find actual distance to an object, one multiplies the distance found as

determined by a radar calibrated to free space by the correction factor.
The actual distance will be less than that measured using free space values,

which means the radar will tend to overestimate range to a target. Table 6-3

shows the errors of range measurement.
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TABLE 6-3.- RANGE MEASUREMENT DEVIATIONS DUE TO ATMOSPHERIC PROPAGATION VELOCITY

(Range = 1000 feet)

t/n Range error Condition

.999868 0.132 feet over estimated range Maximum expected velocity of propagation

.999681 0.319 feet over estimated range Propagation through standard atmosphere

.998398 1.602 feet over estimated range Slowest expected velocity of propagation

The variation in range measurement error = 1.47 feet.

For a radar calibrated at standard atmosphere, the range of distance meas-

urement errors (for a target at 1000 feet range) will vary from -0.187 feet

(for 1/n = .999868) to + 1.283 feet (for 1/n = .998398).

Several conclusions can be reached from this analysis: (1) On the average

a 0.3 foot bias error (at 1000 feet) in distance measurement will be encoun-
tered if free space propagation values are not corrected for refraction ef-

fects in a standard atmosphere; (2) A range measurement variation of approx-

imately 1.5 feet (at R = 1000 feet) will be encountered as the refractive

index of air (n) varies with climate conditions and altitude; and (3) In

light of the accuracies contemplated for crash avoidance radars (approxi-

mately several feet) these distance errors should not have serious impact

on radar performance.

MODULATION EFFECTS

The amount and severity of interference generated in a radar due to rain,

snow, hail, sandstorm, and fog is dependent on (among other things) the

modulation method used. For example, pulse radars offer better interference

suppression potential over FM-CW and other CW-type radars. 4,7.8 Interference

suppression is obtained in pulse radars by effectively gating-out rain re-

turns earlier or later than the region of interest around a target's return

pulse. Thus, only rain clutter in a volume around the target will disrupt

detection. CW systems generally cannot implement interference suppression

methods as easily or effectively due to receiver designs which are usually
always "on."

ANTENNA POLARIZATION CONSIDERATIONS

By transmission and reception of circularly polarized waves of the same

sense, precipitation backscatter, or clutter, can be reduced. This is due

to the fact that smooth, round objects reverse the polarization sense.

A representative figure for improvement of target signal to precipitation
signal is approximately 15 to 20 dB for wet snowflakes to dense rainfall. I
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Other approximately spherical, interfering particles such as dust and sand

should exhibit similar signal suppression. Coincidentally, the signal re-
turns from automobiles are reduced typically 3 to 5 dB. _ This is due to

polarization mismatch of transmitted to received signal.

GASEOUS ATTENUATION

Microwaves experience attenuation when propagated through atmospheric gases.
Backscatter from gases can generally be neglected (unlike in the case of pre-

cipitation). Gaseous attenuation is a function of carrier frequency, alti-

tude, and time of year. I Figure 6-I shows the extreme values (maximum and

minimum) expected in the continental United States. K-band (24 GHz), a com-

monly used frequency, experiences at worst .05 dB/200 m (which is the amount

incurred in a two-way trip out to I00 m and back). This is definitely negli-

gible. However, for frequencies near 60 GHz and then again near 200 GHz, the

attenuation increases to an expected maximum of approximately 6 dB/200 m.
For a radar system with adequate signal margin this can be tolerated. If

system operation is marginal, then gaseous attenuation could reduce system

effectiveness. One can conclude from the gaseous attenuation spectrum that

the 55-65 GHz, 175-225 GHz, and 300-400 GHz region requires additional signal

margin to be designed into the system.

RAIN INTERFERENCE

The effect of rain on radar performance has been studied extensively. 1,4,5,6.

7,9,_0,_ Figure 6-2 shows the attenuation effect of various rainfalls versus

frequency. A radar is compensated for simple rain attenuation by adding ap-

propriate margin into the system design. For example, at 24 GHz add approxi-
mately 3 dB to offset the maximum two-way loss for a target at 100 m. Below

24 GHz this attenuation need not be considered. Above 24 GHz one adds pro-

portionately more margin. For example, g dB should be added at 100 GHz to
maintain adequate target signal return for a target distance of 100 m. Of

course, decreased distance requires less margin addition to system design.

The more challenging problem presented by rain interference centers around

maintaining radar operation in rain clutter, or backscatter. Rain back-
scatter has the potential to obscure detection of actual hazard targets. 4

The ratio of rain clutter power (Pr) to target cross-section power (P_rget)
for CW radar I° is

(CW radar) Pr 2qR 3

P o
target

(6-5)
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The time averaged gated rain return (_ rain) during a pulse for pulse radar I
is

(Pulse radar) - PtAe cCq (6-6)
P -

rain 32 R2

where

R =

0 =

Ae =

c =

Pt =

frequency and rainfall dependent rain reflectivity

distance to target

frequency dependent radar cross-section (RCS)

effective antenna aperture

speed of propagation

pulse width

peak transmitter power

Return power from a target depends on whether a radar and target are operated
in their near fields or far fields. Due to the size of automotive environ-

ment radar targets, near field operation will probably occur over much of the

target's range. The reflecting area of rain in the near-field appears less

than in the far field; 5 therefore, far field calculations should give worst
case values.

The average power during the pulse from an ideal target (Pmrget) of radar
cross-section o at range R for a pulse radar I is

Pt oA2 (5-7)
e

Ptarget- 4nR 4

This assumes no rain attenuation experienced in the wave traveling to the

target and back. Attenuation values given previously can be included if
desired.

The ratio of rain clutter power to power from an ideal target is calculated
to be

Prain nC_qR 2 (6-8)

P 80 A
target e

Backscatter cross-section (q) is found s from figure 6-3. As an example,

for a rainfall of 5 mm/hr (q = 3.105), pulse width of 20 ns (Cz = 6 m),

R = 100 m, Ae = 0.06 m2, cross-section (o) of 10 m2, and _ = 1.25 (24 GHz),
a ratio of unity occurs. If rain interference cancellation by circular

polarization of the antenna is added to this, a signal-to-clutter noise ratio
increase of 15 to 20 dB will occur I which should allow system operation.
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Tests conducted at 50 GHz 11 using FM-CW radar indicate that rain attenuation

is probably of no consequence, whereas rain backscatter must be considered in

system design. In addition, the effect of water adhesion to the radome was

shown to cause measurable loss of sensitivity (approximately 10 dB attenua-

tion for a 0.5 mm thin film of water). Pattern distortion due to reflecting

materials on the radome (e.g., water) can be expected to have some effect on

radar performance. However, careful selection of radome materials and shape

should be adequate to control problems encountered.

The general guidelines apparent in equation 6-8 are (I) narrower pulse width

radar can better exclude rain clutter; (2) the closer the range the better

will be the target power-to-rain clutter power ratio; and (3) bigger targets
are easier to detect in rain clutter, and bigger antenna areas (smaller beam

widths) offer better performance. In addition, (4) higher frequencies could

suffer more from rain interference. However, the increased radar cross-sec-

tion as a function of frequency will tend to somewhat negate the effect of

increased rain clutter. Other observations to be made are that (5) increas-
ing the transmitter power (once rain clutter is detected in the receiver)

does nothing to improve the situation and (6) similarly, improving receiver

sensitivity will not decrease the clutter-to-target ratio.

FOG INTERFERENCE

Fog interferes with radar operation by absorbing, or attenuating, power as a

radar pulse propagates through it. Table 6-4 shows typical values for 24 GHz
and 10 GHz I and extrapolated values for 100 GHz.

TABLE 6-4.- ATTENUATION BY FOG OR CLOUDS

Attenuation dB/tO0 m

Fog

visibility

I0 GHz 24 GHz 100 GHz (extrapolated)

30 m O°C 0.020 0.125 1.25

30 m 25°C 0.008 0.050 0.50

90 m O°C 0.004 0.025 0.25

go m 25°C 0.0016 0.01 0.1

The values in table 6-4 are more conservative than those published previ-
ously. 6 Even so, losses not to exceed approximately I dB can be considered

negligible.
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SNOWINTERFERENCE

Snowmay cause backscatter interference to radars. However, the effect is
approximately one-fifth of the value for water (rain). 17 Since snowfall
rates are generally less than rainfall rates, the effect of snowfall should
be much less compared to rain interference. A possible problem might arise
if considerable snow, ice, or slush accumulation occurs over the antenna
face. However, tests conducted on an automotive radar at 50 GHz11 showed
that no significant effect (less than 1 dB attenuation) for attenuation due
to snowfall or snowfall accumulation (up to 20 mmon radome) was noted.
Additionally, snow backscatter caused no significant degradation in radar
performance. Ice up to 30 mmon the radomeshowedsimilar, negligible
(less than 0.5 dB attenuation) effect. The difference in relative dielectric
constant of water (> 60) comparedwith ice/snow (1-3) account for the varia-
tion in radar performance for rain, snow, hail, and ice. If the snow/ice
should begin to melt forming a layer of water, then degraded performance
might be encountered (see section on rainfall interference).

HAIL INTERFERENCE

Attenuation due to hail is of the sameorder or less than equivalent rainfall
rates. Completely frozen hail particles create considerably less (approxi-
mately 1/100) attenuation and backscatter than particles with water present.
However, when 10-20 percent melted mass is present, hail attenuation/back-
scatter becomesof the sameorder of magnitude as rain. _ The cause of this
change is that the dielectric constant of water is approximately 20 times
(or more) greater than ice. Particles with higher dielectric constants
scatter more energy. In addition, the loss tangent, tan (8), of water is
also muchgreater. At 10 GHz, tan (8) of water is approximately 0.55
comparedwith tan (8) of ice which is approximately 0.0008. This causes
greater absorption of energy for water.

SANDSTORM/DUSTSTORMINTERFERENCE

Analysis of the effects of sandstorm and duststorm (or any other particulate
scattering) would proceed as previous authors have done for analyzing rain-
fall effects. 1 Onecalculates the average scattering cross-section per
scatterer, the density of scatters per unit volume, and then arrives at the
reflectivity.

The reflectivity of particles varies with iKiz. IKiz is determined by the
dielectric constant of the scatterer. IKlz for water is approximately 0.93

at IO°C at X-band. iKlz for ice = 0.197 over all temperatures and centimeter

wavelengths. I IKiz for sand and dust (assuming quartz, silica, and other ox-

ides are major constituent elements) should be approximately equivalent to

ice, possibly slightly larger. In addition, the particle size should average

less than rain and ice thereby further reducing the scattering and attenuat-

ing cross-section. An increase in scatterers per unit volume could cause

higher attenuation and backscattering. It is felt that sandstorm and dust-
storm interference should be orders of magnitude less than rainfall.
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SECTION 7

DATA COLLECTION RADAR SYSTEM (RF/IF)

INTRODUCTION

This section provides a technical discussion of the data collection radar, or

test bed radar, used during Phase I. System components described in this
section are the transmitter and receiver RF and IF hardware. Considerations

on system design are also presented. This radar was designed and fabricated
by NASA-JSC personnel and NASA-JSC support contractor personnel.

PURPOSE OF DATA COLLECTION RADAR

A data collection radar was required to provide data not obtainable elsewhere

on target return signal behavior and facilitate verification of radar hard-

ware techniques which could be useful in later development stages of this
project.

PRELIMINARY SYSTEM REQUIREMENTS FOR DATA COLLECTION RADAR

A set of preliminary system requirements was generated based primarily on

considerations of the automotive target environment, limitations on antenna

size, previous researchers work in this area, component availability, weather
interference effects on radar performance, and ready availability of certain

antenna testing and component testing equipment. Table 7-I shows these
requirements.

Carrier Frequency

Selection criteria for the requirements will now be given. Initially, 24 GHz

was chosen for several reasons. First, it has been proved effective in the

automotive environment. For example, 24 GHz police speed radars are offered
by most of the major vendors. 1,2,3,4 These radars have demonstrated useful

velocity measurement over the range of vehicle speeds from approximately
10 through 100 mph. In addition, previous researchers have used K-band

(24 GHz) for the development of simpler collision avoidance radars. How-

ever, Nissan of Japan appears to be the only automotive radar researcher

heretofore attempting to significantly develop a system which extracts

information useful in determining angle rate data using K-band radar. 5
However, only limited experimental results were available for review dur-

ing this Phase I effort. Thus, it is felt that while K-band i__ssappropriate

for range and range rate determination, angle and angle rate capability in

this general application has not wet been proved for automotive radar appli-
cation. Incidentally, no other frequency has been yet proved to our know-
ledge.

Secondly, K-band microwave hardware and test equipment are relatively easy to

obtain and are moderately priced. Because of the limited use of components
built for higher millimeter-wave frequencies, their costs still reflect the
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TABLE7-1.- PRELIMINARYDATACOLLECTIONRADARSYSTEMREQUIREMENTS

System parameter

Carrier frequency

Modulation type

Pulse width

Pulse repetition frequency

Peak transmitter power

Receiver

Reference channel

Angle channel

Receiver dynamic range

Receiver noise figure

Amplitude tracking

Angle channel nulling

IF bandwidth

Detected video bandwidth

Requirement

24 GHz

Pulsed - on/off keyed

20 ns

100 KHz (rough order of magnitude)

2W

2 channels

Ranging within several feet

Target angle indication within TBD*degrees

65 dB minimum

9-10 dB maximum

_+i dB or TBD

30 dB minimum

120 MHz

60 MHz

*TBD= To be determined

low volume nature of production. On the other hand, the microwave com-
ponent industry is currently growing and expanding due to Department of
Defense (DoD) activities and satellite applications with more low cost,
high volume suppliers appearing every year. In addition, componentscapa-
bilities are also increasing each year. The current limited production
capability of the industry should not deter researchers from investigating
the higher millimeter-wave frequency bands. At present, K-band components
are the most readily available within the millimeter-wave bands.
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Modulation Type

Pulsed (on/off keyed transmitter) modulation was chosen basen on several

important considerations. Lack of isolation is aproblem that continuous

wave radars must always contend with. Pulse radars do not generally suffer

from this. The on/off nature of the transmitter assures there will be quiet,
or isolated, periods during which the receiver can operate at maximum gain

and sensitivity. The only exception to this might be if a continuously

running (coherent) transmitter were on/off keyed using series RF switches

(e.g., pin diode switches). High isolation switches would be required.

Pulse radars offer very good range information. For example, by counting the

time interval from the edge of the transmitted pulse to the target return

pulse edge, a precise indication of range to the target can be derived. The

accuracy achieved is determined by signal-to-noise (S/N) ratio, leading edge
risetime, detector circuitry, target noise, etc. In addition, extended

length targets can be detected fairly easily during signal processing of the
return signal by observing the length of the target return pulse.

Immunity to rain backscatter is another advantage of pulse radar (see section

on weather effects). Rain clutter is suppressed by using narrow pulse widths

with a receiver that employs some type of gating, detection scheme (e.g.,
range bins), digitally or analogically generated.

Pulse Width

A pulse width requirement of 20 ns is based on several considerations.

First, an average car is approximately 20 feet long. If equal reflections

are received along each point of the 20-foot length, a reflected pulse of
60 ns (approximately three car lengths) will be received. On the other hand,

a flat metal sign (e.g., boulevard stop sign or speed limit sign) has essen-

tially no depth. It will generate a 20 ns reflected pulse. A receiver band-

width of approximately 33 to 100 MHz respectively will be required (_ = 2,

see IF/video bandwidth section) for these pulse widths. If, however, longer
pulse widths are used, the target resolution will suffer. Conversely,

shorter pulse lengths require proportionately wider receiver bandwidths. In

addition, narrower pulse widths require proportionately higher transmitter
power to maintain similar sensitivity to the 20 ns pulse width.

Pulse Repetition Frequency (PRF)

The choice of PRF is based on the motion or speed of target, distance to the

farthest target which will come into view, and receiver signal processing.

Targets that change position quickly require higher PRF's. A target's change
in position in effect modulates the return pulses, e.g., in amplitude for

different angles from the radar boresight. By using the highest possible

PRF, a radar has a chance at following these target return pulse modulations.
If too slow a PRF is used, pulse-to-pulse fluctuations can occur which w_]l

disrupt the tracking process. However, in simple radars (constant pulse-
width, constant PRF) an upper limit for the PRF is ultimately determined by

the farthest possible target which the radar will see. For example, for a
farthest possible target at 5,000 feet (approximately 5,000 ns delay each
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way) a PRF of i00 KHz is required. If a target at greater than 5,000 feet

should return enough power to be detected in the receiver, it would appear

just after the next transmitted pulse. This situation is termed range

ambiguity. Reducing the PRF is the simplest way to alleviate it. Varying

the PRF and employing target signal processing is another more complicated

method, but it would allow higher PRF's if they become necessary.

Radar System Performance Calculations

Link margin calculations are usually employed when determining the effect

of radar system component performances on the total system performance.

Equation 7-I shows the basic radar range equation used in radar system

design. B Assumptions made when using equation 7-I are (1) monostatic

antenna, (2) near-ideal propagation conditions, and (3) single pulse

detection (no averaging). It nevertheless provides a sound basis for

initial system design.

Rmax = 4,416 [ PtG2° ]_
f2T S/N B L

(7-1)

where

Pt --

Rmax =

f =

T =

S/N =

B =

G =

0 =

L =

peak transmitter power (kW)

range (thousands of feet)

frequency (MHz)

system noise temperature (degrees Kelvin)

required signal-to-noise ratio (ratio)

effective receiver bandwidth (kHz)

antenna gain (ratio over isotropic)

target radar cross-section (mz)

miscellaneous loss factor (ratio)

Equation 7-1 can be used several ways. It could be used to find the trans-

mitter power required given a certain set of remaining parameters, or an in-

vestigation into the effect of varying system characteristics (e.g., change

in noise figure, etc.) can be performed.

Table 7-2 shows calculations used during the design of the data collection
radar. These were used to predict system performance under a variety of con-

ditions. Transmitter power, antenna gain, range, cross-section, receiver

bandwidth, and miscellaneous losses were considered for their effect on sys-

tem response as measured by the predicted S/N ratio. Equation 7-2 shows the

radar range equation rewritten to solve for S/N.

S/N=3.803×1014[ PtG2° ]
R4 fZT B L

(7-2)

7-4



TABLE 7-2.- EFFECT OF RADAR PARAMETER VARIATIONS ON SIN PERFORMANCE

Radar
Radar factor values for various configurations

parameter

Actual data collection radar

(units) Initial system (end of Phase-I system)

Ideal Ideal Actual Actual Actual

Pt (Kw) .002 (2 W) .002 .0002 (200 mW) .0002 .0002

G (ratio) 50 (17 dB) 50 50 295 (24.7 dB) 295

W/G array standard gain

o (m 2) 10 (car) I (man) 10 I 10

R (103 ft) .300 (300 ft) .150 (150 ft) .300 .150 .300

F (MHz) 24,000 24,000 24,000 24,000 24,000

(24 GHz)

T( TM) 1540 1540 1540 1540 1540

(8 dB NF)

B (kHz) 75,000 75,000 350,000 130,000 130,000

(75 MHz) (350 MHz) (130 MHz)

L (ratio) 1.25 (1 dB) 1.25 2 (3 dB) 1.25 1.25

S/N (ratio) 28 (14 dB) 45 (17 dB) .4 (-4 dB) 91 (20 dB) 57 (18 dB)

NOTE:
These are the specifications for the radar actually used I_ _
during Phase I to collect radar data presented in later isections of this report.

Reflected in table 7-2 is a chronological development of the Phase i data
collection radar. Initial calculations showed that a S/N ratio of 14 dB

should be obtained using 2 watts transmitter power, 17 dB (slotted wavegulde)
antenna, 10 ms target (average car) at 300 feet, 75 MHz receiver bandwidth,

and approximately 9 dB overall system noise figure. A l m2 (man) target at

150 feet should generate a S/N ratio of approximately 17 dB in this radar
system.
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These system design goals are not realistic, but within the time/budget

constraints of the Phase I program, system adjustments and substitutions

were required to obtain a usable system. Transmitter peak power of

200 mW as opposed to 2 W had to be used. The original antenna had a VSWR of

approximately 2:1 to 4:1 depending on the port measured. The log-IF ampli-
fiers were specified at 100-200 MHz bandwidth, but actually had in excess of
350 MHz bandwidth. Filters were constructed and added at the IF input and

detected video output. Standard gain horns (24.7 dB nominal gain) were used

as a functional replacement for the slotted waveguide array antenna. These

changes resulted in a usable data collection radar system. The slotted wave-

guide array antenna was used during preliminary system testing, but could not

provide sufficient gain for useful data collection. To alleviate this prob-
lem, standard gain horns were used during data collection. The standard gain

horns do not provide a wide enough horizontal coverage area. In addition,
their vertical beam width is too wide.

Receiver Dynamic Ranqe

Required receiver dynamic range is determined by considering the various
radar cross-sections to be tracked and the distance over which they must

be tracked. Adverse propagation conditions will eventually need to be

considered, but could be neglected during Phase I system design because Phase

I testing did not include inclement weather testing and because it is felt
that weather attenuation effects for K-band (24 GHz) radar used for distances

out to 300-500 feet are not significant (see weather effects section). In

addition, the angle channel required some additional dynamic range to be

added to allow useful operation over the range of target cross-sections.

Tests were performed on a limited set of targets. Target RCS span of 1 to
100 m2 was chosen for calculation purposes. The useful target ranges (mini-

mum to maximum) were set at 50 to 300 feet, respectively. Approximately 15

dB were added for angle channel variation. The power received from a target
varies as the quartic (4th power) of range. Receiver power varies linearly

with RCS (refer to equation 7-1). An additional amount of receiver dynamic

range is required to track targets through the angle channel lobes. The
total receiver dynamic range is estimated by equation 7-3.

(R4max) (omax)dBdyn = 10 log + 10 log + KdB
R4 min o min (7-3)

where dBdyn =

Rmax =

Rmin =

omax =

omin =

KdB =

receiver dynamic range (dB)

maximum target range (feet)

minimum target range (feet)

largest target RCS (m2)

smallest target RCS (m2)

angle channel requirement (dB)

Results of equation 7-3 and values used to calculate it are shown in table

7-3.
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TABLE 7-3.- RECEIVER DYNAMIC RANGE VALUES

Variable

Rmax

Rmin

0 max

Value

300 ft

50 ft

100 m 2

o min I m 2

KdB 14 dB

Total dynamic range

Contribution

31 d8

20 dB

14 dB

65 dB

Receiver Noise Fiqure

Based on components appropriate for this application, a 9-10 dB worst case

noise figure was expected. Exotic and costly receiver techniques such as
cooled paramps are not cost effective nor reliable enough for this use.

Standard waveguides, coaxial components, microwave mixers, and moderate cost

IF amplifiers were employed. Figure 7-1 shows noise component distribution.

LI = -1.0 dB

NI(dB ) = 1 dB

NI = 1.26

G I = 0.79

-0-

Lz = -6.5 dB

N2(dB ) = 6.5 dB

Nz = 4.47

Gz = 0.22

-CT

N3(dB ) = 2.5 dB

N3 = 1.78

-oN sys

Antenna +

Trans. Lines

Mixer IF AMP

+ LOG-AMP

+ Detector

Figure 7-1.- Noise component distribution.
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The equation for calculating cascaded system noise factor is

N 2- 1 N 3- 1.
N sys = N 1 + --+

G 1 G 1G 2

Using the estimated values given in figure 7-1, an overall noise figure
of 10 dB was estimated.

(7-4)

IF/Video Bandwidths

The IF bandwidth requirement is set primarily by transmitted pulse width.
IF bandwidth is found from B

c(

Bopt = -- (7-5)

where Bopt = optimum receiver bandwidth

bandwidth constant (1.0 - 2.0)

transmitted pulse width

For a 20 ns pulse and letting _ be 1.2, a commonly used value, an optimum

bandwidth (Bopt) of 60 MHz is found. This is optimum in that it should max-

imize the signal-to-noise ratio. It does not optimize suppression of pulse

distortion nor does it allow for any IF center frequency drifting due to
oscillator drift caused by thermal effects. A compromise IF bandwidth of

120 MHz (= = 2) was chosen for implementiation. The required video band-

width is one-half of the IF bandwidth due to spectral folding arising from
detection.

RF/IF System

A radar was assembled using the previously discussed system characteristics

(fig. 7-2). The radar is a two-channel, phase monopulse system. The angle

channel compromises antennas A and B which are vectorially differenced in a
microwave hybrid. Its output is down-converted by a coaxial K-band mixer.

This output is amplified by an IF preamplifier whose gain is 16 dB. A Cheby-

shev bandpass filter is used after the preamplifier (1) to set the noise

bandwidth presented to the succeeding log-IF amplifier and (2) to eliminate

out-of-band interference from external and internal sources (e.g., pulse mod-

ulator bleed-through and radars operating in adjacent frequency bands). The

appendix of this section includes a report of the Chebyshev filters. After

filtering, the return signal is applied to a log-IF amplifier. The output of
the log-IF amplifier is a direct current (dc) pulse which is the logarithm of

the input pulse envelope. This technique allows compressing an 80 dB, or
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100 million-to-one power ratio, into a 0 to 1.5 V range. Logarithmic ampli-
fication and detection obviates the need for automatic gain control circuits.

Pulse-to-pulse variations of 80 dB are instanteously accommodated. Finite

fall-time of the detected pulse output is one limitation of this technique.

A typical fall-time is approximately 3 pulse widths. However, strong pulses

adjacent to each other can be detected sooner. Since detection is performed

noncoherently, no phase balance between channels is required. Time delay

variations versus input power appeared to be less than 1 ns for a 30 dB

change in input power which is the maximum power difference expected between
the two receiver channels.

Direct current coupled Chebyshev lowpass filters were used on the detected

video output from the log-IF amplifiers. Table 7-4 shows the specifications

for the lowpass filters used. Figures 7-3 and 7-4 show additional detail

needed for completeness of system documentation.

TABLE 7-4.- CHEBYSCHEV LOWPASS FILTER SPECIFICATIONS

dc - 60 MHz (actual)

5-element, PI configuration

I dB ripple (actual)

50 dB out-of-band rejection (through 1GHz)

50 to 100 ohm characteristic impedence (actual)

SMA connectors

SMA
connector

-m+-]

_._-_ 15 turns, 18AWG

__ on T-30-O Toroid Cores

200 NH_ _ 200 NI'IK/ SMA "
r i___H.Hconnectors

_T_
,,.o,...YUU

silver L_ /
M CA.
capacttors

Figure 7-3.- Lowpass filter schematic/construction diagram.
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-5

Llde

!

!

, _f
60 MHz

In-band
Out-of-band

1 GHz

Figure 7-4.- Typical lowpass filter measured response.

Operation of the receiver reference channel parallels the previously

described angle channel with the exception that only a single wide beam
width antenna is used. Because of this no microwave hybrid is needed.

However, the transmitter antenna is diplexed with the reference channel
receiver antenna.

An on/off pulse transmitter is used. A trigger pulse is generated by the
timing and sampler board. It is fed to a shaper circuit which buffers it

for use with a high current pulser. The pulser generates an adjustable

high current pulse which is the only power applied to the microwave Gunn

diode. The current and duration of the dc pulse determines the RF pulse
power and pulse width. The microwave generating components comprise an

iris coupled waveguide cavity, a Gunn diode, and the dc pulse bias network.

A low-power (10 mW) CW Gunn diode is used in a low-duty cycle (.001) pulsed

mode. CW Gunn diodes can produce significantly more peak power when oper-

ated in this manner. Peak power of 200 mW was achieved in this application.

Because of the low average power dissipated, virtually no heating of the

cavity occurred. Peak power of 2 W was intended for this radar; however, the
2 W diodes were not used because they did not arrive until the end of Phase

I. There is nothing exotic in the construction of the 2 W diodes although
they are special order items (Microwave Associates - M/A COM, Burlington,

Mass.). When produced in quantities similar to the lower power diodes they

should cost approximately the same ($10 - $20 in quantities of 100 or more).
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INTRODUCTION

This report describes the design, analysis, construction, and testing of
bandpass filters presently used in the collision avoidance radar intermedi-

ate frequency circuitry. These Filters are required to (I) reject out-of-
band interference caused by other microwave sources adjacent to the radar

frequency used in this radar, (2) suppress pulse modulation bleed-through
which exists from dc to 100 MHz, and (3) to set the noise bandwidth presented

to the logarithmic-IF (LOG-IF) amplifiers which amplify and detect the target
return signals. These filters are installed between the pre-amplifiers and
the LOG-IF amplifiers (fig. 1).

WIDE-BAND
PRE-AMP

BAND LOG-IF
PASS AMP

FILTER

VIDEO
DET.
OUT

Figure I.- IF component arrangement.

DESIGN SPECIFICATIONS

The required bandwidth is set by the pulse width (PW) of the transmitter.
A pulse width of 20 ns is used. The best signal-to-noise ratio and least

pulse distortion occur when the IF bandwidth is chosen between I/PW and 2/PW.
To achieve low pulse distortion and to allow for oscillator frequency drift-

ing due to temperature changes, 2/PW was chosen as a filter design goal.
Because of nonideal filter shape at band edges due to gradual roll-off, the

effective detected noise bandwidth will be slightly higher (approximately
2 dB). The design goal for filter bandwidth was 100 MHz. A filter center

frequency of 150 MHz is required by the LOG-IF used. The structure of the

filter was chosen as 6-element PI configuration which represents a compromise

between ideal filter response and a structure which is easy to build and

align. A Chebyshev 0.1 dB ripple filter design was used. This filter design
offers good out-of-band rejection, sharp roll-off, controllable in-band loss,
and ease of alignment.

PR£CE)I_tG I_E BLAN!_: ROT FII.IliF_

_IN'TENflONALLlr BLANK
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PROCEDURE

First, a Chebyshev lowpass prototype is chosen. Then a transformation

is performed which (1) changes the structure from lowpass to bandpass,

(2) sets the center frequency and ripple bandwidth, and (3) changes the

impedance to 50 ohms. Finally, a filter schematic with component values

can be constructed. The above steps are listed in the following section.

DESIGN TABLES

Bandpass Filter: 6-Element Chebyshev

I. Design Goals

a. Center frequency = 150 MHz

b. Ripple bandwidth = 100 MHz

c. 6 elements = > 6-pole response

d. In-band ripple = 0.1 dB

e. Maximum insertion loss < I dB

f. Out-of-band attenuation > 50 dB

2. Lowpass Prototype Structure

a. 3 elements

b. 0.1 dB ripple

c. Pi-configuration

d. Fc = 1 radian

e. Zin = 1 ohm

f. Clp = 1.0316 F

g. Lls = 1.1474 H

3. Transformed Values

L2 = ((LLp)(Z))/(B)

LI = ((B)(Z))/((w0Z)(CLp))

C2 = (B)/((w02)(CLp))

c1 : (CLp)I((B)(Z))

EQ. 1

EQ. 2

EQ. 3

EQ. 4

7-16



Where B

W o

Z

B

Z

W o

= radian bandwidth of transformed filter

= transformed radian center frequency

= desired filter impedance

= 6.2832 x 108 (i00 MHz)

= 50 ohms

= 9.4248 x 108 (150 MHz)

Wo_ = 8.8826 . 1017

CLp = 1.0316 Fd

LLS = I.1474 H

4. Calculated Values for Transformed Bandpass Filter

L2 = 91.307 nH

LI = 34.285 nH

C2 = 12.330 pF

C_ = 32.837 pF

,,,

L2 C2

II

Cl -]-- LI C I

,'Jh" ,"

O

Figure 2.- Filter schematic.
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IDEAL (CALCULATED) FILTER RESPONSE

After a candidate filter schematic is generated, it is good modern engineer-

ing practice to verify the design by computer analysis. To this end a com-

puter file was written and results of its analysis were plotted. A sophisti-
cated microwave and RF computer-aided design (CAD) program, SUPER COMPACT PC,

was used for this analysis. Results verify that correct component values

were calculated, and the frequency response plots act as a guide or baseline

for comparison with actual measured response of the constructed filters.

Results of this analysis show that this filter design meets all of the design

goals. (Computer file and plots are included at the end of this section.)

SUPER COMPACT PC 10/23/85 10:07:28 File: BPASS3
i

_CHEBYSHEV BANDPASS FILT., 0.1DB RIP., IOOMHZ RIP BW, Fc=150MHZ

5: 6-ELEMENT, PI-CONFIGURATION, Z=50 OHM, DESIGNED FROM LOWPASS PROTOTYPE

LAD
CAP I 0 C=32.837PF

IND i 0 L=34.285NH

CAP 1 2 C=12.330PF

IND 2 3 L=91.3c)7NH

IND 3 0 L=34.285NH

CAP 3 0 C=32.837PF

A: 2POR 1 3

END

FREQ
5: USE FIRST FREQ'S FOR IN-BAND RESPONSE

STEP IOOMHZ 220MHZ 2MHZ

STEP IOMHZ IO00MHZ IOMHZ

END

OUT

PRI A S

END

Computer Analysis Program
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MEASURED RESPONSE

Two filters were constructed, tuned, then tested using a scalar network

analyzer. Results of the measurements are plotted and shown at the end of

this section. The maximum insertion (in-band) loss was less than 0.5 dB.

The ripple bandwidths were on the order of 85 MHz while the 3 dB bandwidths

were approximately 130 MHz. Thus, the design goal of 100 MHz is determined

to be met adequately. A maximum ripple of approximately 0.3 dB is also

a]lowable for this application. Out-of-band attenuation Follows the theo-

retical values closely. The following plots show return loss (S11) and

transmission loss ($21) versus Frequency for each of the two Filters.

#1
CHI: A -M CH2: B
10.0 dB/ REF .00dB .2 dB/

12>

V

-_ 86 MHz

-M
REF .00dB

1

"L-{$21

STAT + IO00GHZ
2

STOP + .2500GHz
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CONSTRUCTION

Standard, modern lumped element RF engineering techniques were used to real-
ize these Filters. C1 is two chip capacitors soldered in parallel. L1 is a

hand-wound inductor of four turns of 18 A.W.G. magnet wire. The diameter is

0.15 inches and the length is 0.15 inches. L2 is also a hand-wound inductor

of eight turns of 18 A.W.G. magnet wire measuring 0.25 inches by 0.15 inches

diameter. C2 is a commercially available variable capacitor (3 pf to 23 pf).

A Figure is included at the end of this section showing additional construc-
tion details.

TOP SIDE
VIEW VIEW

Figure 3.- Filter packaging details.
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SECTION 8

PREDICTED RESPONSE FOR DATA COLLECTION RADAR

INTRODUCTION

This section presents the predicted IF response of the data collection radar.

Details of the antenna placement, spacing, and relationships are discussed.

Predicted patterns are given for the antennas used during Phase I. The ori-
ginally intended antenna array had a much wider azimuth beam width and lower

gain. Standard gain horns were used as functional replacements because of

their higher gain. The normalized angle channel response (fig. 8-10) is

not now significantly different except the peaks are slightly closer spaced
(compare with fig. 8-11) than the slotted waveguide array. Operation,

function, and purpose for the important microwave and IF components are
discussed.

RADAR CONFIGURATION AND RESPONSE

Block diagrams showing pertinent radar RF/IF component detail as well as

antenna information are given below.

ANGLE

OUT

vL_ OUT

Pulse

XMTR

Figure 8-1.- Radar block diagram.
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T
3'10"

Earth

4.0"

_L

331 jC
j_All antennas are K-band

_Horizontal polarizationused

41-- 4.9" --_ (I-'- 4.3"

Figure 8-2.- Front view - looking into antennas.

E - PLANE H - PLANE

Figure 8-3.- $ectoral horn dimensions.
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Figure 8-5 shows predicted radiation from a standard gain horn (at 24 GHz)
in the E-plane. One-way power is shown. The vertical beam width for these

standard gain horns is approximately 8-10 degrees.

Figure 8-6 shows relative power versus angle for the reference channel.
This curve includes two-way gain. Suppose a certain target gives a return

of -40 dBm on boresight (zero degrees); from figure 8-6 it can be seen that

approximately -58 dBm signal level will be received if the target moves to

± 10° from boresight. This curve can be used to visualize how the received

signal level will fluctuate as a target of constant radar cross-section at

a constant range changes angle with respect to the radar. The angle channel

(_) response will now be derived. Angle antenna arrangement for an incoming

plane is shown in figure 8-7.

INCOMING

I PLANE WAVE

HYBRID

MICROWAVE

_ HYBRID
OUTPUT

Figure 8-7.- Angle channel orientation (azimuth plane).

Since both antennas are co-aligned, their amplitude versus angle responses

are the same. The signal amplitude reaching each antenna will be similar.

However, a phase shift exists due to the slanted wavefront. In addition,

the amplitude response will decrease as 0 moves away from zero degrees.

This pattern response was shown for a single antenna in figure 8-6. In

the 180 degree microwave hybrid, vector signal differencing takes place.

The relative phase shift between antenna A and antenna B is given by

where d _._

h =

0 =

2nd
qJ[radians] = -- sin 0

h

distance between antenna phase centers

wavelength of radiation

angle from boresight (zero degrees)

(8-i)
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The output of the 180 degree microwave hybrid difference port is

A=A-B (8-2)

where A =

B =

signal from antenna A

signal from antenna B

Noncoherent (enveloEe) detection is used in the angle channel. Therefore,

the phase shift of_- is not important. Amplitide is the parameter of inter-
est. This is given by the absolute value of A which is

Antenna signals A and B are given in phasor notation by

(8-3)

A = Amp2(0) e +J_/2 (8-4)

-'_ Amp2 j_r2B = (O)e-
(8-5)

where Amp 2 (e) = two-way relative field strength pattern (fig. 8-6).
Proceeding from equation 8-3 we find

[_[= [ Amp2(0) e+j_/2-Amp2(o) e-

I_=Amp2(0) [ e+JtPpsi/2_ e-J_/2 ]

[A[= Amp2(0) 2j sin _--

- Ilal = 2 Amp2(0) sin _--

j_ _i_ I -* (8-6)

-* (8-7)

(8-8)

(8-9)

The influence of the term sin E is shown plotted in figure 8-8.
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I I I
-3n -2n -n n

I
2n 3n

r Lp

Figure 8-8. Isin(_)Iversus kv.

Substituting for qJpsi in equation 8-9 leads to

IInd IIiAl= 2 Amp2(8) sin Tsin (8) (8-10)

The graph of equation 8-10 in decibel power form is shown in figure 8-9.

After passing through the receiver IF circuitry, both the reference channel

and angle channel signals are logarithmically envelope detected. These

logarithmic signals are processed in a difference (normalizing) amplifier

which also compensates for any amplitude imbalances between the channels.

This is required because (1) the angle channel peak signal will be 3 dB

higher than the reference channel due to the two antenna array used in the
angle channel and (2) the circulators, mixers, pre-amplifiers, filters, and

sampler channels each have a fixed (unknown) amplitude imbalance between

channels which can be nulled out by amplitude trimmers in a difference

amplifier.

The output of the normalized angle channel, which can now be analog-to-digi-
tal converted, is given by

Normalized angle channel voltage = K-log

where K = gain constant (adjustable)

Ref = reference channel voltage

Angle = angle channel voltage

Ref _ (8-11)
Angle /

8-8



m
"D

LU
"r
I--

4'

4

i

I

Q

ii
o ii

o

t

itIli I

q

u

t

o
e

I

o

o
4,

Q

• w TM

I

i

• • im

0 O

I

O

I

C)

I

C)
O0

I

(EIVI) _JO'l 0 L

0

C3

0

O

E)
P_

0

E)

O

0

E)

0

GJ
E

n_
..E
U

(J
E

f,-
CL_

tl-.
LI-
-r--
"O

tl-
Q

.p.)
3
_L

3
(3

OJ

3

P

E

%-

(3
r_

I

d
!

L

°r'-

8-9



The logarithmic detection transfer function is also reflected in equation
8-11. Amplitude trimmer adjustment is made so that both the reference and

angle channel signal achieve the same peak values as e is changed. Thus,
the normalized angle voltage will dip to zero, but never below, since the

reference channel signal is adjusted so that it is always greater than or

equal to the peak angle channel voltage (equation 8-12).

Reference channel signal _ angle channel signal (8-12)

The purpose of the logarithmic amplifier/detectors, gain trimmers, and dif-

ference amplifier is to produce an angle channel voltage which is independent

of the target's radar cross-sectlon, the power transmitted, the range to the

target, the amplitude pattern of the antennas used, and the wavelength of op-
eration. This can be seen from the following. The total reference channel

signal is given by

Reference channel voltage = K2 x/Pr Amp 2 (e) (8-13)

Where K
2 = adjustable gain constant (e.g., K2 = 2)

x/Pr = voltage due to power received (found from radar

range equation)

Amp _ (e) = amplitude versus angle field strength pattern factor

(two-way)

The total angle channel signal is

Angle channel = V'Pr2Amp2(O)[sin[ nd

Substituting into equation 8-11 yields

(8-14)

Normalized angle voltage = K log {Fs [  o(olI}
Equation 8-15 results are shown plotted in figure 8-10. Figure 8-11 shows

the expected pattern for the original slotted waveguide array antenna which

was not used for data collection. Achieving these response curves in prac-

tice requires an adequate signal-to-noise ratio existing in each channel,
otherwise the amplitude will be limited and additional noise will be
introduced.
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ANTENNA PLOTS GENERATING PROGRAM AND DATA

The data shown in figure 8-4 is a reconstructed plot of data points taken

from a curve in the AntennaEngineeringHandbook by Jasik. The data aregiven

is table 8-1. Sixty-one points were used. Figure 8-5 is the same curve,

only the Y-axis has been put into decibel power units [10 log (y2)]. In

addition, the X-axis was plotted in linear degree scale as opposed to the

non-linear scale used by Jasik. The plot of figure 8-6 is the same as
figure 8-5 except that to represent two-way power the verticle scale dB

values were doubled. Equations 8-10 and 8-15 were solved using a computer

program which is given in table 8-2. The computer program was used to

generate the data files for the plots used in figures 8-4, 8-5, 8-6, 8-9,

8-10, and 8-11. In equation 8-15, d = 4.9 inches for the standard gain horn

array whereas d = 3.0 inches for the slotted waveguide array. The value used

for K was 1.0. Lambda (k) was 0.49 inches.

TABLE 8-I.- DATA USED TO GENERATE PLOTS

X Y X Y X Y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

o.go

0 .g5

I .00

1.000

.996

.980

.960

.936

.908

.868

.820

.760

.710

.660

.610

.560

.500

.450

.416

.380

.356

.332

,326

.324

I .05

1.10

1.15

I .20

i .25

1.30

I .35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05

.330

.338

.340

.346

.348

.348

.346

.338

.328

.308

.280

.260

.230

.200

.176

.152

• 128

.110

.098

.090

.096

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

2.70

2.75

2.80

2.85

2.90

2.95

3.00

.108

.120

.132

.144

.152

.156

.160

.160

• 156

.146

.136

.124

.108

.092

.080

.066

.054

.040

.034

NOTES: (I) X =

(2) Y =

(3) b =

(4) k =

b_si. (e)

Relative field strength

3.3

.49
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TABLE 8-2.- COMPUTER PROGRAM #i - DATA FILE GENERATION

5 REM REVISION 4-17-86 8:30

'o _,Dp_,"_ 20 "A:STDGAIN DAT"

20 O?EN"O",I,'A:PLOTI DAT"

no OPEN'O" 2 "A:PLOT'_ DAT _

40 OPEN'O',$,'A:PLOT3 DAT"

60 OPEN"O",5,'A:PLOT5 DAT"

"0 OPEN .n" 6 "A:PLOT6 DAT"

80 RTD:I80/3. 14159

. _MBDA= 49qo ""

'00 B=3..3

II0 '"

120 INPUT#20,X, Y
' " '_M,o0 R_,., SIN(THETA)-"-_

• 40 Z:X,LAMBDA/B

'50 THETAR:ATN(Z/SOR(I-Z*Z))

:60 THETAD=THETAR*RTD

70 pD_,NT#', ,HE,AD,Y

:80 AMPDB=IO,LOG(Y*Y)/LOG(IO)

•qO. °D!NT#2,THETAD_.. . ,AMPDB

....n_ =AMPDB+AMPDB200 _._',r _-

210 PRINT#3,THETAD,AMPDB2
220 DI:4.9

230 CI:3.14159*DI/LAMBDA

235 IF Z=O THEN Z:.O01

240 FI=ABS(SIN(CI*Z))

250 DIFF=2*Y*Y*FI

255 DIFFDB=IO,LOG(DIFF*DIFF)/LOG(IO)

260 PRINT#4,THETAD,DIFFDB

270 ANGI=K*LOG(I/FI)/LOG(IO)

280 IF ANGI>! THEN ANGI=I

290 PRINT#5,THETAD,ANGI

300 D2:3

310 C2=3.14159*D2/LAMBDA

315 IF Z=O THEN Z=.O01

320 F2=ABS(SIN(C2*Z))

3ZO ANG2:K,LOG(I/F2)/LOG(IO)

340 IF ANG2>I THEN ANG2:I

350 PRINT#6,THETAD,ANG2

355 IF X:3 THEN STOP

360 GOTO 120
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SECTION 9

DATA ACQUISITION SYSTEM

INTRODUCTION

The ground rules used in developing the data acquisition system centered

around the following:

1. Minimum development time by procuring off-the-shelf items as much as
possible.

2. No real time data processing, i.e., radar data will be recorded to be
reduced after the test.

The availability of compatible items dictated to a significant extent the

capability of the system, e.g., the analog-to-digital (A/D) converter con-
version delay and the time expander bandwidth.

HARDWARE DESCRIPTION

Figure 9-1 shows the block diagram of the data acquisition system used in the

radar development program. Part a of the figure shows the portable portion
of the system that was installed in the van carrying the radar. Part b shows

/

To video

Oiff]_

Bandwidth

reduction

Time

Expander

(Z channels)

Normalize

&

Natchin 9

Amplifier

JL_

RT Audio CH _.

Stereo

VCR

LFT Audio CH

Ca) Portable portion of system

RT Audio

Chan __L

Tape

Playback

LFT Audio _
Chan

Signal

Conditioner

SYnC

L_ Enable

CH Zero

Analog-to-

Digital

Converter

CH One

Microprocessor

(with peripherals)

(b) Laboratory portion of system

Figure 9-1.- Data acquisition system.
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the laboratory portion of the system that was utilized after the test to ac-

quire the radar data from a tape.

The data flow starts with the signals carried in from the radar video detect-

ors. The incoming two channels are the sum or range channel of the radar and
the difference or angle channel of the radar. Each of these channels is in-

put to a channel of the time expander subsystem where the system bandwidth is

reduced to roughly 10 kHz. The integrity of these separate channels is main-

tained through the expansion process and then into the normalizing amplifier.

This amplifier conditions the sum channel to be compatible with the audio in-

put of the video cassette recorder (VCR) and outputs the sum channel to the

VCR. From this point in the flow the sum channel is also called the range,

R, channel since this is the channel used for threshold detection and time

delay measurements. The difference channel input is processed through the

normalizing amplifier by comparing and subtracting its value from the magni-
tude of the sum channel. This subtraction normalizes this channel to be

independent of target size and target range so that the amplitude of the
output is a function of target angle. Hence, after conditioning to be

compatible with the VCR, the channel is the angle, _, channel.

During testing the radar range and angle information are recorded on the two
channels of the stereo audio system. Simultaneously the test scene is re-

corded on the video portions of the VCR tape. This video scene information

is essential in documenting the radar data to the actual test.

After completion of tests the VCR is brought into the laboratory and played

back into the signal conditioner in figure 9-1 (b). This conditioner con-

verts the signal level to be compatible with the A/D converter 0 to 5 volt

level. The signal conditioner unit also generates a trigger or sync that
initiates the action of the A/D converter. This sync occurs every 88 ms.

The A/D converter is a multichannel system of which only the first two

A/D channels are used. The converter is set to accept unipolar signals

from 0 to 5 volts. The converter operates with 12 bits of precision and a

conversion rate of 27 kHz. Output from the A/D is taken by the computer by

a direct memory access (DMA) port.

The computer is a 16-bit IBM-PC-XT compatible co-processor and peripheral

support. Data taken via this system are processed to an end product (e.g.,

plots) or written to disk file for accessing and processing later.

Table 9-1 shows values of some of the overall system parameters. As was

stated, the time magnification factor is 4000, meaning that instead of a

2 ns delay to measure 1 foot of range, there is an 8 Ms delay. For an en-

vironment with four or fewer targets, the system update rate is once every

88 ms (or 11.36 updates per second). For 5 to 20 targets this will increase
to 176 ms. Final transmitted pulse width was 55 ns, increased from 20 ns.

This was required due to sampler/digitizer deficiencies.
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As is shown in table 9-1, a two-channel A/D converter is used to sample range
and angle sequentially. There is a 37 us interval between samples. The max-
imumrange is 508.75 feet with a resolution of 9.25 feet. Angular resolution
was measured to be something less than 0.25 degrees for a static point target
with no multipath.

TABLE9-1.- PERTINENTCARSYSTEMPARAMETERS

Radar system (Used to collect experimental data only)

Time magnification:

Effective date rate:

Transmitter pulse width:

Data acquisition system

4000

11.36 updates/second (_ 4 targets)

55 ns

A/D converter:

Channel information:

Conversion time/channel:

Maximum range:

Range resolution:

Angular resolution:

two channel - sampled sequentially

zero = range; one = angle

37 us

508.75 feet

9.25 feet (i)

< 0.25 deg meas (2)

(I) 74 us between samples divided by 8 ps/foot

(2) For a static point target with no multipath

Time Expander Board

The purpose of this board is to slow down or time magnify the radar echo sig-
nals so that they can be processed at a slower rate. This is done basically

by saving single samples from consecutive, transmit/echo intervals, each
sample delayed slightly in time from the previous sample, to build a slowed-

down version of the transmit/echo interval. For the case of this radar, the
time magnification was 4000.

Figure 9-2 is a block diagram of the sampling board. The heart of the sub-
system is a circuit board from a Tektronix 1502 time domain reflectometer.

However, because of difference and additional requirements, modifications
had to be made.

The 250 kHz oscillator shown in the figure is the master timing clock of the
radar. Its output, which is delayed to the modulator to allow time to start

the sampling system, is the trigger to the radar for a transmission. It also

triggers the fast ramp generator once for every transmit pulse.
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Tape

Recorder

Sl_
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Generator /
Oe1 ay

4-_

250 KHz

Oscillator

Fast

Ramp

Generator

Powe r

Supply

Figure 9-2.- Block diagram of time expander system.

The output of the fast ramp is compared to a ramp that is running much, much
slower. When the two voltages are equal, the strobe generator is activated

and it generates a pulse that is less than ans in width. This pulse acti-
vates the sampling gate so that the voltage present from the receiver de-

tector during this short pulse width is captured and held as an output until

the next strobe generator output. This captured voltage is conditioned and
sent to one of the channels of the VCR audio inputs. Though not shown on
figure 9-2, there are two sampling gate channels: one for the radar reference
channel and one for the radar difference channel.

The time delay between samples at the sampling gate output is the period of

the 250 KHz oscillator plus a small fraction of time, t. Hence, in order to

cover all of the radar transmit/echo interval, many, many transmit intervals

must pass. A different way of saying this is that the sampling gate output
will take a long time to show samples at the end of the transmit/echo inter-

val. Or, time expansion has taken place.

The prices of time expansion, of course, are reduced throughput data rate,
desired in this application, and loss of ability to correctly resolve velo-
cities, a penalty in this case if pushed to an extreme.
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Video Cassette Recorder

The VCR used in this project was the Panasonic PV-9000/PV-A860 portable
stereo recorder. It was run as a portable unit as needed, but often was

run with normal ac voltage as the prime power. Video was provided to the
recorder by a JVC GX-N70U color video camera.

Modifications were made to the electronics in the audio channels of the VCR.

These changes were made to disable the automatic gain control (AGC) circuitry

to enable a linear transfer function for voltage through the system. This
was necessary since angular position was to be determined from absolute volt-

age in the angle channel. The modifications installed were done such that

they could be switched out and the VCR audio channels operated normallj.
Appendix A discusses the modifications made to the VCR.

A/D Converter Unit

The A/D converter used was a Data Translation DT 2801-A, 12-bit converter.

The voltage levels were from 0 to 5 volts, positive. The conversion delay

was set to the minimum of 37 _s which yields a throughput of roughly 27 kHz.

Two channels were active with the first channel sampling the sum or range
channel and the second being the difference or angle channel. With each

sample being separated by 37 _s, range is sampled every 74 _s, with angle
being measured in the interval between range samples.

Computer

The computer required was an IBM PC or compatible. The computer dedicated in
this application was the AT&T 6300 PC. The main reason for the AT&T over an

IBM XT was speed. The AT&T benchmarked roughly twice as fast as the IBM for
the software being run. This was an important factor in the number of tar-
gets that could be handled.

Peripheral and extra hardware in the computer included a color cathode ray
tube (CRT), graphics board, math co-processor, printer, and plotter. The

Data Translation DT-2801A A/D board plugged into a standard slot in the AT&T

and was powered by the computer. A cable extended the A/D inputs out to a
terminal board.

The computer operating system was MS DOS and the software package used in the
program was an engineering package called ASYST. Included in ASYST are IO

drivers to call and exercise the plotter and to initiate and handle the A/D
converter. This hardware/software compatibility was intentional and short-
ened the overall development time.

SOFTWARE DESCRIPTION

The software of choice in the CAR was a scientific software package called

ASYST distributed by Macmillan Software Company, New York, N.Y. This soft-

ware set was chosen because of its capabilities in mathematics, ease of use
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in graphics (e.g., plots) and, most importantly, its inclusion of subroutines
to handle inputs through the A/D converter system up to its rated 27 kHz
throughput. ASYSTruns on an IBMPCor equivalent and requires a math co-
processor and a graphics board. It was used in the CARprogram in an AT&T
6300 PC.

The software areas involved with completion of the first phase of the CAR
program are discussed in the remainder of this section. These areas in-
clude real time data acquisition software, target identification, and sys-
tems calibration and tests.

A/D Sample Rate Tests

In testing the A/D converter to prove the 27 kHz throughput capability, a

program called CSPEC.CAR was developed. This program takes in a time sample

of the signal present on channel zero of the converter and, using the math

capabilities of the ASYST software, converts this voltage versus time history

into the frequency spectrum of this input signal. The listing of the ASYST

program to do this is shown in table 9-2.

ASYST uses word definitions, or macros, to denote functional lines of code.

A defined word extends from: "word name" to a semicolon. In the code of

table 9-2, the defined words are INFREQ, DMAP, and FPLOT. To get the signal

spectrum, INFREQ and FPLOT need to be run and, as is noted in the last two

lines, function keys F9 and F8 are programmed to execute these words.

Assuming that some time-varying voltage is being applied to channel zero of

the A/D converter, pressing function F9 will initiate execution of INFREQ.
This macro orders the A/D converter to take in 512 samples of channel zero,

one sample every 37 _s and store them in the array INSPEC. INSPEC is then
scaled from 0 to 10 volts, the magnitude of the fast fourier transform (FFT)

calculated over the INSPEC array and this result stored in the array FARRAY.

The dc term in the FARRAY is then set to zero.

If function key F8 is then depressed, the macro FPLOT will execute. This

plots the FFT of the input as stored in FARRAY as a function of the array

FRAX. FRAX contains numbers, in ascending order, that scales the abscissa to

frequency. Thus, with FRAX plotted as the independent variable and FARRAY as

the dependent variable, the spectral content of the input is plotted with

appropriate labels.

Figure 9-3 is an example of this program. It shows the spectral content of a

6 kHz sine wave amplitude modulated by a I kHz sinewave. The plus and minus
sidebands located I kHz from the 6 kHz carrier are as expected. Figure 9-4

shows the same 6 kHz carrier, but modulated this time by a 1 kHz square wave.

More spectral components are present and some spectral folding can be sur-
mized. These frequencies were used only to test capability of the A/D con-

verter.

It should be noted, that even though the plot axes are scaled to 20 kHz by

the plot routine, data points are plotted only to 13.5 kHz. This is the

Nyquist rate for the A/D converter throughput rate of 27 kHz.
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TABLE 9-2.- PROGRAM LISTING OF CSPEC.CAR PROGRAM TO DEMONSTRATE A/D CONVERTER
THROUGHPUT RATE

DIM[ 512 ] DMA. ARRAY INSPEC

REAL DIM[ 256 ] ARRAY FRAX

REAL DIM[ 512 ] ARRAY FARRAY

FRAX []RAMP

FRAX 13.5 _ 256. /
FRAX :=

0 0 A/D. TEMPLATE ONE.ONLY

0 A/D.GAIN

.027 CONVERSION. DELAY

EXT.TRIG

A/D. INIT

: INFREO

0 INSPEC :=

INSPEC DMA.TEMPLATE.BUFFE_
A/D. INIT

ONE.ONLY A/D. IN>ARRAY(DMA)

INSPEC

0 10 A/D.SCALE

FFT ZMAG

FAR_AY :=

FA_RAY

0. SWAF

C I ] :=

: DMAF

I NSFEC

0 10 A/D.SCALE

Y.AUTO. PLOT

: DFLOT

FARRAY

SUB[ 2 , 256 , I ]

Y. AUTO.F'LOT

: FFLOT

FRAX

FAR_AY

SUB[ 1 , 256 , I ]
XY.AUTO.PLOT

NO_MAL.COORDS

.017 .090 CHAR. SIZE

.4 .075 POSITION

" FREOUENCY (kHz I " LABEL

.4 .975 F'OSITION

" IBM/DT SF'ECT_UM ANALYZER " LABEL

270 LABEL.DIP

.035 .7 POSITION

" MAGNITUDE " LABEL

F9 FUNCTION. KEY.DOES INF_:EO

F8 FUNCTION.KEY. DOES FPLOT

ASYST Version 1.5

Page 1 c:cspe,z.car 03/13/86
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Real Time Processinq Software

It was understood at the beginning of the program that it would not be pos-
sible to process the CAR radar data and make decisions on that data set in

real time. This is due to the complexity and unique requirements for signal

processing which can be handled easier using slower off-line processing tech-
niques. The best that could be done for the amount of time available to

develop the overall system was to record the data to be played back later.

While this allows data reduction to be done after the test completion, there

is still a real time interface required to digitize the audio channels as the
data tape is being played back. That piece of software and the hardware

limits are the topic of discussion here.

The final configuration of the processing used two channels of the A/D con-

verter sampling alternately between the range and angle channels of the

radar. A total of 112 samples are taken with odd numbered samples being
range. The first range sample is taken at the same time the transmitter is

triggered to transmit so that this sample became a "clock tick" to keep track

of time rather than a "zero range" reading. Range samples were taken every
74 ps thereafter until the 112 sample array was full. Sample number 111

represented the last range sample. This range bin correlates to a range
of 508.75 feet. The range interval covered by the radar then was from 0

(theoretically) to 508.75 feet.

Angle measurements were data conversions stored in the even numbered array

positions, e.g., 2, 4, 6,..., n, etc. The angle value associated with range
bin 111, the maximum range, was in bin 112. This approach was used because

the target detection criteria was whenever the signal level in the range
channel exceeded a minimum threshold a detect would be declared and that

point in time (called a "range bin") would be saved as a target. The 37 _s
delay between the detection in the range channel and the A/D conversion in

the angle channel would allow extra time for the angle channel voltage to
reach its proper level, i.e., measured angle is proportional to absolute

angle channel voltage.

Figure 9-5 shows the correlation of range and angle samples from the A/D

converter. A total of 112 samples are taken, but in the figure they are

divided into the odd numbered, representing range, and the even numbered for

angle. In the example, enough energy is detected at bin 107 to declare a

target. This correlates to a range of 490.25 feet (since the first bin is

at zero range). The estimate of angle will come from the absolute voltage

reading converted on the 108th sample as noted in the figure.

The software to activate the A/D converter and make it take the 112 sample

set is quite simple. The problems with regards to real time come when the
112 sample array has to be scanned for targets and the target information of

time, range, angle voltage, and return magnitude saved in another array. The

final software configuration to accomplish this is a program called RADAT.CAR

shown in appendix B. The main points of the program will be presented here.
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The A/D converter fills the 112 sample array called INDATA. For each INDATA

received, the array is scanned and all detected targets are separated from
the array and stored in an output array of 61,280 bytes called OUTDAT. For

every transmitted pulse (every INDATA input) at least one target information
set will be stored. If no real targets are found, INDATA sample 1 will be

stored to keep track of time. The information stored in OUTDAT is trans-

mitter number (ticks of a clock), range bin or target, angle voltage (binary

representation), and target magnitude (also binary). A separate counter is

run counting the number of times OUTDAT is accessed. When this counter

reaches 7500, the run is terminated.

Termination is necessary because of limits on the largest array that can be

handled by ASYST. When this limit is reached, or approached, but never

reached here, real time data acquisition terminates and the data stored to

that point is written to a disk file. RADAT.CAR accomplishes this file gen-
eration and also prompts the operator as to the first and last transmitted

pulses processed since the tape playback started. This allows the tape to be

rewound to the beginning and when RADAT.CAR is run, the operator can tell the
computer which transmitted pulse to start on and data acquistion will not

begin until the tape has reached the point where the previous data acquisi-

tion pass had terminated.

The only complication to this software was the ability to handle more than

one target being present in the INDATA array when it is processed. The pro-

cessing of each target takes time and with the input data rate to the A/D

converter being one datum every 88 ms, only so many targets can be processed
within this time interval. Measurements in the lab showed this number to be

four targets. If more than four targets are present, they all will be pro-
cessed, but the A/D converter will not be re-enabled in time to take the next

radar data set. This data will be lost. The procedure was evolved to accept

the data loss, but to update the time count artificially if more than 4 tar-

gets are found correlated with a given tranmitted pulse. By this method,
four targets are handled without data loss and some 20 targets can be handled

without loss of time sense. This concept could be extended further if neces-

sary, but system evaluation never reached the point of needing this multi-

target feature.

In summary, the real time data processing software, RADAT.CAR, can process

multiple targets and will generate disk files of this captured radar data.
More than one disk file may be necessary to cover all the data in the test,

but the software provides features of syncing the stops and starts of files

such that the data are consecutive. The threshold criteria is operator
selectable at runtime.

Multiple Tarqet Trackinq Software

The second level of CAR radar data processing is software to access the data

files written by the real time pre-processing software and identify the indi-

vidual targets detected by the system. The ultimate goal is to separate the

targets from one another in both range and angle and establish a tracking
history for each. The target history file will be used to extrapolate future

locations, smooth over individual data points to try to improve accuracy, and

to accommodate the expected short-term dropout due to target noise or multi-
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path. It should be pointed out that with the monopulse scheme used for angle
measurement, two targets located at the same range, but at different angles
will appear as one target at some composite angle.

Since angle calibration data did not exist for the CAR system at the time

this second level software was being written, separation of targets by range

only was accomplished. The first step in separating targets in range is to

decide that all adjacent range bins exceeding threshold are target returns

from a single target, i.e., this is a target extended in range. If two range
bins exceed threshold, but have at least one range bin between them that does

not exceed threshold, then these two threshold detects arise from two separ-

ate targets. This was the criteria used to identify separate targets in
range. The last decision was to minimize target information carried by re-

ducing all targets extended in range to their closest point to the CAR radar,

i.e., track only the smallest bin range. When angular resolution and sensi-

tivity information was available, the line-of-sight (LOS) angle information

would be incorporated into the decision process so that the true LOS minimum
distance would be tracked.

The program TARID.CAR in appendix B was the software under development to
accomplish this task. It has incorporated into it the ability to reduce

range extended targets to their closest point to the radar. Initial thoughts

were being developed to incorporate a target memory for each detected separ-

ate target, but this effort was halted to support system testing. Multiple

target tracking was simulated by using the brain and eye to identify indi-
vidual targets in plot routines.

Both TARID.CAR and RADAT.CAR were checked out by simulation software which

generated appropriate inputs simulating a radar output. Simulations of one

and two target scenarios were run and correctly processed by the software.

Systems Test Software

The initial effort in the systems area was to calibrate the angel channel re-

sponse so that volts could be converted to line-of-sight angle to the target.
This was acoomplished by the prgram STATS.CAR in appendix B. This program

was written to take a 100 sample set of a target configuration (e.g., the
target located 1.5 degrees to the right of boresight). The target can be at

any range. The computer operator can select a range bin (target location)
and the software will automatically calculate and output to the screen the

mean and standard deviation of the sample set of voltage in the range bin and

voltage in the angle bin. This gives a measurement of the magnitude of the
noise process in each channel.

To calibrate the angel channel, it is necessary to perform tests as above for
many angles. For instance, the CAR radar angle response was calibrated from

9 degrees right in 0.5 degree increments. STATS.CAR was used to accomplish
this by utilizing the correct macro in the software. This macro allows the

operator to save the mean and standard deviations from individual data points

and plot the entire sequence at the end of the test run. For the angle cali-

bration tests, the elapsed time to calibrate over 18 degrees is approximately
6 hours. At the end of the test, plots of the angle and range channels means
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and standard deviations can be made by calling the appropriate plot routines
with STATS.CAR.

A real time data acquisition piece of software, called TESTSEG.CAR (appendix
B), was written to acquire and write to disk file, tests of short duration

and medium memory requirements. Under this latter requirement, a multiseg-
mented disk file was not necessary and a single segmented data file can be
used and re-accessed more conveniently. The heart of TESTSEG.CAR is from the

operational software program, RADAT.CAR, previously discussed, but memory/
array usage is limited to 16,160 bytes. This limits test times to less than

3 minutes for single targets. Realistically, tests of less than 2 minutes in

the normal multitarget environment were supported.

The conclusion of TESTSEG.CAR was a disk file containing time, range bin,

angle voltage, and target voltage. The software DISSEG.CAR (appendix B) is
a follow-on software set that accesses the data file written by TESTSEG.CAR,

identifies individual targets, and discriminates extended targets to their

closest point. Multitarget plots can be made from the discriminated data.

Since only data points are plotted (and not line-connected points), the human

eye/brain determines the individual targets and their specific time
trajectories.

The static target case was also run with TESTSEG.CAR and those data files

were accessed by SELBIN.CAR, also in appendix B. The output of SELBIN.CAR

is a point plot of the time history of any operator-selected range bin and

its corresponding angle bin. This was used to present the time consecutive
data and visually assess the amount of channel noise.
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INTRODUCTION

The recorder contains a high fidelity stereo sound system in addition to the

standard monophonic channel. The stereo and monophonic channels are automat-

ically recorded at the same time. The monophonic channel is a mix of the two

stereo channels. The monophonic channel is recorded on an edge track of the
tape while the stereo channels are recorded in the same area as the video.

It is the two stereo channels, with their wider bandwidth, that is of inter-

est for recording analog data.

PROBLEM

The audio channels contain automatic gain controls which do not respond well

to narrow pulses. As a result, the gain is automatically set to near maxi-

mum. This causes a poor signal-to-noise ratio and clipping of the higher

amplitude pulses. For successful recording of narrow and widely-spaced

pulses, it is necessary to disable some of the AGC circuitry.

MODIFICATION

Switches have been added to the stereo channels for bypassing AGC circuitry.
The slide switches are mounted to the circuit board above the tape transport

and behind the cassette. They can be operated with a long screwdriver while

the cassette holder is raised and the cassette removed. Look to the right-

of-center for the black handles which point downward.

The left-hand switches operates the left channel and the right-hand switch

the right channel. Place the switches in the right-hand position to bypass

the AGC (pulse mode) or in the left-hand position to return operation to
normal.

CIRCUIT OPERATION

Recordinq

The microphone inputs are much too sensitive for most signal sources. The
stereo line adaptor contains a 300:1 attenuator and is recommended for use

between the signal source and the microphone inputs. The stereo line adaptor
plugs directly into the microphone and video output jacks. The video connec-

tion is needed to pick up a second ground for the input signal return. Sep-

arate ground connections are used for the signal source and the input attenu-

ator. This is part of a scheme to reduce interference from cable noise

pickup.

The signals enter the recorder at the jack panel. Refer to the motor drive

and jack panel schematic in the Pv-go00 service manual. The signals are

amplified by a preamplifier (IC6901) which has a gain of 50. From here the
signals are passed to the FM audio circuit board.

_E_INIENI_LLI BLANK

9-17
/



On arrival at the FM audio board, the left channel signal is processed by

IC4203 and the right channel by IC4204. These are hard limiting AGC circuits

that only become active for large input signals, and at that point, limit the

signal to a precise level. Their time constants have a fast attack and very
slow decay characteristics. When switches $I (left channel) and $2 (right

channel) are in the normal position and with typical input signal levels,
these circuits have a fixed gain of 10. Refer to switch sections SIA and S2A
on the modified FM audio schematic. When the switches in the pulse position,

the gain is reduced to i. This allows the input signals to be increased by a
factor of 10, for a better signal-to-noise ratio and without activating the

AGC action. The signals leave IC4203 and IC4204 through pin 27. From here,

IC4208 and IC4209 route the left and right channels to the second AGC.

The second AGC circuits (IC4205) have a soft action, for a limited effect

on gain and have medium attack and decay characteristics. This is a dynamic
noise reduction system that compresses the signal amplitude range during

record, and later, expands the range to normal during playback. In this

kind of operation, the gain control is always active, and therefore, should
be disabled for pulse recording. Switch sections SIB and S2B bypass the gain

control stages when placed in the pulse position.

The signals now go to IC4202 for an additional amplification of 20, and then
return to IC4203 and IC4204 for frequency modulation of carriers. The left

channel modulates a 1.3 MHz carrier and the right channel modulates a 1.7 MHz

carrier.

After modulation, the carriers pass through lowpass filters, are mixed, and

then amplified by the record amplifier. The record amplifier includes tran-

sistors Q4219 through Q4222 and drives two FM audio heads. These heads are

located on opposite sides of the cylinder, as are the video heads.

For monitoring of the recorded signals, a second output (pin 1) is taken from
IC4203 and IC4204. These signals are routed by IC4211 to the output ampli-

fiers (IC4215). These amplifiers drive the headphone jack.

Playback

The two FM audio heads used for recording are also used for playback. During

playback, the signal carriers go to the FM audio circuit board and IC4201.
This IC contains preamplifiers, an electronic switch, and AGC. The electron-

ic switch is synchronized to the cylinder rotation. A constant signal is fed

to the electronics by switching to each head as it comes in contact with the

tape. The AGC provides the correct carrier amplitude to the following cir-
cuits.

The output of IC4201 passes through bandpass filters to separate the left and

right channel carriers. The left channel carrier (1.3 MHz) is amplified and
fed to IC4203. The right channel carrier (1.7 MHz) is amplified and fed to

IC4204. The integrated circuits contain several functions including limiters

and frequency demodulators.

The demodulated signals pass through lowpass filters and de-emphasis net-
works. IC4208 and IC4209 route the left and right channel signals to IC4205.

9-18



The AGC circuits of IC4205 function the same during playback as they did

during record. For playback of analog pulse c_ata, the AGC should be dis-

abled. Set switches $1 and $2 to the right-hand (pulse) position, as they
were for recording.

The signals are amplified by IC4202 and routed by IC4203, IC4204, and IC4211.

IC4211 is controlled by the audio selector switch. Set the switch, which is

located on the right side panel, to the L/R position. This makes both stereo

channels available at the output. From IC4211, the signals go to the output

amplifiers (IC4215) and then leave the recorder through the stereo headphone
jack.

The audio-output cord is a handy adaptor which separates the left and right
channels into two cords and terminates them in the more familiar RCA phone
jacks. Set the adaptor switch to the stereo position to use both channels.

SPECIFICATIONS

Normal Operation

Place switches $1 and $2 in the left-hand position and refer to the specifi-
cations listed in the PV-9600 operating instructions manual. However, tests

show the frequency response to be down 8 dB at the specified upper band-edge
of 20 KHz.

Pulse Operation

Place switches $I and $2 in the right-hand position.

Optimum record level:

Input level:

Playback level:

Rise time:

0.4 volts peak, monitored at headphone jack

1 volt peak typical, with 300:1 attenuator

0.4 volts peak, inverted, at headphone jack

35 _s
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Panasonic PV-9000 video cassette recorder - FM audio
circuit modifications (switches shown normal position).
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INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

\

\ CRASH AVOIDANCE RADAR

\ DATA ACQUISITION AND PRE-PROCESSING SOFTWARE

\ WXC 8/21/85

\ UPDATE 11/18/85 WXC

\ UPDATE MASKS MAIN BANG USING A VARIABLE THRESHOLD.

\ THIS PROGRAM ACQUIRES CAR RADAR DATA FROM THE AUDIO CHANNELS OF

\ THE VIDEO RECORDER, PRE-PROCESSES FOR THRESHOLD DETECTION AND

\ WRITES THE DATA SET TO MEMORY. AFTER 60,000 BYTES HAVE BEEN

\ STORED IN MEMORY THE PROGRAM TERMINATES WITH PROMPTS TO WRITE

\ THE DATA TO A DISK FILE.

\

\ DEFINE INPUT & OUTPUT DATA ARRAYS AND COUNTERS

DIM[ 112 ] DMA.ARRAY INDATA

INTEGER DIM£ 7660 , 4 ] ARRAY OUTDAT

SCALAR EYE

SCALAR HITS

SCALAR BNUM

SCALAP ICOUNT

SCALAR CNDX

SCALAR BFIRST

\ DEFINE HIT ARRAY, THRESHOLDS AND RANGE/ANGLE INDICES

\ SET UF' FOF: OUTPUT FILENAME

INTEGER DIM[ 56 ] ARRAY HARRAY

INTEGER SCALAR THRSH

INTEGER SCALAR RNDX

INTEGER SCALAR ANDX

INTEGER SCALAR THRSHI

14 STRING FILENAME

\

\ SET UP THE A/D CONVERTER PARAMETERS

0 I A/D. TEMPLATE ZERO.ONLY

1A/D.GAIN

.037 CONVERSION.DELAY

EXT.TRIG

A/D. INIT

INDATA DMA. TEMPLATE.BUFFER

\

\ SET THRESHOLDS AND ZERO ARRAYS/CONSTANTS

: INITIALIZE

0 BNUM :=

0 EYE :=

0 ICOUNT :=

0 OUTDAT :=

0 HARRAY :=

0 HITS :=

CR ." INPUT THRESHOLD VALUE: "

BEGIN

#INPUT NOT

WHILE

" INVALID NUMBER, REENTER: "

REPEAT

DUP THRSH1 :=

I - THRSH :=

ASYST Version 1.5
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\

\ ROUTINE FOR WAITING FOR PROPER TRANSMITTER PULSE

: WAITONE

CNDX 1 - CNDX :=

CNDX 0 =

IF EXIT THEN

CNDX 0 DO

A/D. INIT

ZERO.ONLY A/D. IN>ARRAY(DMA)

BEGIN ?DMA.ACTIVE NOT UNTIL

BNUM I + BNUM :=

BNUM .

L OOP

\

\ ROUTINE TO SYNC TO DATA TAPE

: SYNC

CR ." INPUT THE NUMBER OF THE NEXT TRANSMITTED PULSE:

BEGIN

#INPUT NOT

WHILE

" INVALID NUMBEF, REENTEF_: "

REPEAT

CNDX :=

CNDX BFIRST :=

WAITONE

C_T ." BNUM = " BNUM .

CR ." STARTING DATA SAVE ON NEXT TRANSMITTE_ PULSE. "

\

\ BEGIN THE DATA ACQUISITION LOOP UNTIL MEMORY FULL

: SCANSTORE

BEGIN

\

\ TAKE A DATA SET ( FILL INDATA ARRAY )

A/D. INIT

ZERO.ONLY A/D. IN>ARRAY(DMA_

BEGIN ?DMA. ACTIVE NOT UNTIL

\ UPDATE TRANSMITTED PULSE COUNTE_

BNUM 1 + BNUM :=

\ SCAN THE INPUT AF:RAY FOP NUMBE_' OF HITS

TH_SHI INDATA [ I ] :=

\ SET VAFIIABLE THRESHOLD INSIDE MAIN BANG HOLDOVEF

THRSH INDATA [ 3 ] := \ 3 IS THROWN AWAY ALWAYS

\ 5 IS SET TO 5 VOLTS

INDATA [ 5 ] 4500 <

IF

THRSH INDATA [ 5 ] := \ 5 CAN EXIST

THEN

\ 7 IS SET FO_I 5 VOLTS

INDATA [ 7 ] 4500 <

IF

THRSH INDATA [ 7 ] := \ 7 IS ELIMINATED

ASYST Version 1.5
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THEN

\ 9 IS SET FOR 5 VOLTS

INDATA [ 9 ] 4500 <

IF

THRSH INDATA [ 9 ] := \ 9 IS ELIMINATED

THEN

INDATA SUB[ I , 110 , 2 ] THRSH [>] \ THIS CHANGED 12/10/85
TRUE. INDICES

I []DIM HITS :=

REV[ 1 ]

HARRAY SUB[ I , HITS , 1 ] :=

HITS 1 >

\ IF NUMBER OF HITS > ONE THEN DO ONE LESS

\ (HIT ARRAY HAS BEEN REVERSED)

IF

HITS I - HITS :=

THEN

\ ENTER MEMOPY WETITE LOOP

HITS 0 DO I

+ EYE : =

ICDUNT i + ICOUNT :=

BNUM

HA_AY [ EYE ]

DUP DUF'

RNDX :=

I + ANDX :=

INDATA [ ANDX ]

INDATA [ RNDX ]

\ WRITE DATA TO MEMO_;Y

OUTDAT [ ICOUNT , 4 ] :=

OUTDAT [ ICOUNT , 3 ] :=

OUTDAT [ IC:OUNT , 2 ] :=

OUTDAT [ ICOUNT , I ] :=

LOOP

0 HA_AY SUB[ I , HITS p 1 ] :=

\ EXIT WHEN >= TO 7500

ICOUNT 7500 >= UNTIL EXIT

\

\ A ROUTINE TO PLO_ THE INPUT ARRAY. NOT CURRENTLY CALLED.

: DMAP

INDATA

0 10 A/D.SCALE

Y.AUTO.PLOT

\

\ ROUTINE TO INVOKE WPITING THE COLLECTED DATA TO

\ A DIS_C FILE. FILE SIZE IS BASED ON THE ACTUAL DATA

\ COUNT "ICOUNT" AND WILL BE APPROXIMATELY 60,000 BYTES

: WRFILE

FILE.TEMPLATE

1 COMMENTS

INTEGER DIM[ 766 , 4 ] SUBFILE

ASYST Version 1.5
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10 TIMES

END

CR ." TO &RITE THE DATA TO DISK ENTER A 1

CR ." OTHERWISE ENTER a ZERO. "

BEGIN

#INPUT NOT

WHILE

" NOT a NUMBER, REENTER: "

REPEAT

O=

IF EXIT

THEN

CR ." NAME OF DATA FILE ? "

"INPUT FILENAME ":=

FILENAME DEFER> FILE.CREATE

FILENAME DEFER> FILE.OPEN

CR ." YOU HAVE 64 CHARACTERS TO INPUT THE TOTAL DATA COUNT "

CR .°' (ICOUNT); THE FIRST TRANSMITTED PULSE NUMBER; AND THE "

CR ." LAST TRANSMITTED PULSE NUMBER. INCLUDE SOME TEST NAME ALSO:

CR ." REMEMBER A CARRIAGE RETURN ENDS THIS INPUT! "
CR

"INPUT

1 >COMMENT

1 SUBFILE

OUTDAT SUB[ I , 766 ; I , 4 , 1 ] ARrAY>FILE

2 SUBFILE

OUTDAT SUB[ 767 , 766 ; 1 , 4 , 1 ] ARRAY>FILE

3 SUBFILE

OUTDA_ SUB[ 1533 766 ; I

4 SUBFILE

OUTDAT SUB[ 2299 766 ; 1

5 SUBFILE

OUTDAT SUB[ 3065 766 ; !

6 SUBFILE

OUTDAT SUB[ 3831 766 ; 1

7 SUBFILE

OUTDAT SUB[ 4597 766 ; 1

8 SUBFILE

OUTDAT SUB[ 5363 766 ; i

9 SUBFILE

OUTDAT SUB[ 6129 766 ; I , 4 , I ] ARRAY>FILE

10 SUBFILE

OUTDAT SUB[ 6895 766 ; I , 4 , ] ] ARRAYS>FILE

FILE.CLOSE

C_

\

\ THE EXECUTIVE ROUTINE THAT ACTUALLY MAKES ALL THIS RUN

\ IN A SEQUENCE.

: EXEC

INITIALIZE

SYNC \ CALLS WAITONE

SCANSTORE

CR .°° THE LAST DATA SET NUMBER IN MEMORY WAS " ICOUNT .

CR ." THE FIRST TRANSMITTED PULSE WAS " BFIRST .

CR ." THE LAST TRANSMITTED PULSE WAS " BNUM .
WRFILE

CR

F9 FUNCTION. KEY.DOES EXEC

4 , I ] ARRAY>FILE

4 , 1 ] ARRAY>FILE

4 , I ] ARRAY>FILE

4 , 1 ] ARRAY>FILE

4 , 1 ] ARRAY>FILE

4 , 1 ] ARRAY)FILE

ASYST Versior. 1.5

Page 5 c:radat.car 03/I3/B6 10:07

9-26



OF pOOR Q_T,xLrFY

\ CRASH AVOIDANCE RADAR

\ TARGET POINTER PROGRAM

SECOND LEVEL RADAR DATA PROCESSING - - TARGET ID

\ WXC 9/27/85

x THIS SOFTWARE ACCESSES THE PRE-PROCESSED RADAR DATA FILES AND

X ESTABLISHES IDENTITIES OF INDIVIDUAL TARGETS SEEN DURING THE

x DATA RUN. TARGET RANGE EXTENT IS ABOLISHED AND A TARGET IS

\ DEFINED BY ITS CLOSEST POINT.

\

\ THE TARGET IS DENOTED BY A POINTER WHICH SHOWS

k WHERE THE VALID TARGETS ARE WITHIN THE ORIGINAL

\ DATA ARRAY OR FILE SEGMENT.

INTEGER DIME 766 , 4 ] ARRAY FILSEG

INTEGER DIME 20 ] ARRAY TARA

INTEGER DIM[ 766 ] ARRAY TME

INTEGER DIMZ 766 ] ARRAY PTAR

INTEGER SCALAR SFILNUM

INTEGER SCALAr: ISTA_T

INTEGER SCALAR ILIM

INTEGER SCALAP IC

INTEGER SCALAR ICl

INTEGEF SCALA_I IPT

INTEGER SCALAr: TSTA_:T

IN_EGEG SCALA_ HDX

INTEGEF SCALAR NDX

INTEGER SCALAR II

INTEGER SCALAR HITS

INTEGER SCALAR TOTHITS

INTEGER SCALAR ITEMP

FILE. TEMPLATE

1 COMMENTS

INTEGER DIME 766 , 4 ] SUBFILE

I0 TIMES

END

14 STRING FILENAME

: OPENF

CR ." INPUT NAME OF DATA FILE?' "

"INPUT FILENAME ":=

FILENAME DEFEF _ FILE.OPEN

\

\ SE_ UP AND PC-ESTABLISH CONSTANTS/COUNTE_:S

: INITIALIZE

0 SF ILNUM : =

0 I START : =

0 ILIM : =

0 IC :=

0 ICT : =

0 IF'T : =

0 TSTART :=

0 HDX : =

0 NDX : =

0 II :=

0 HITS :=

ASYST Version 1.5
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0 FILSEG :=

0 TARA | =

0 THE : =

0 TOTHITS :=

0 PTAR : =

\

\ SIZEFIND EXAMINES THE FILE SEGMENT JUST READ TO ESTABLISH

\ THE NUMBER OF ENTRIES. THE FULL SEGMENT IS 766 4-ELEMENT

\ ENTRIES. THE RESULT OF SIZEFIND IS THE PARAMETER ILIM.

\ IT MAY BE 766 OR LESS. PROCESSING OF DATA FROM THE SEGMENT

\ SHOULD USE ILIM TO PROPERLY TRUNCATE THE FILE.

: SIZEFIND

TME [ 1 ] ISTART :=

BEGIN

IC I + IC :=

IC 766 >

IF

0 IC :=

766 ILIM :=

EXIT

THEN

TME [ I[ ] ISTART ,

IF

I[ I - ILIM :=

0 IC :--

EXIT

THEN

AGAIN

\

\ ONEPULSE ESTABLISHES ALL THE RADAR RETURNS THAT ARE

\ ASSOCIATED WITH A TRANSMITTED PULSE. ICT IS THE

\ NUMBER OF RETURNS FOF THAT TRANSMITTED PULSE. THE

\ PARAMETEF _ IF'T IS THE COF_RECT POINTEF' FOF' THE NEXT FILE

\ SEGMENT ELEMENT.

: ONEPULSE

0 ICT :=

TME [ IPT ] TSTART :=

IPT ILIM =

IF

1 IPT + IF'T :=

I ICT + ICT :=

EXIT

THEN

BEGIN

I IPT + IPT :=

IPT ILIM >

IF

EXIT

THEN

I ICT + ICT :=

IPT ILIM =

IF

ASYST Version 1.5
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OF P(_i< QUALITY

UNTIL

\

TME [ IPT ] TSTART >

IF

EXIT

THEN

IPT I + IPT :=

ICT 1 + ICT :_

EXIT

THEN

TME [ IPT ] TSTART >

\ TARSEP IS THE ROUTINE TO EXAMINE ALL RETURNS FROM A

\ SINGLE TRANSMITTED PULSE AND IDENTIFY INDIVIDUAL TARGETS.

\ A TARGET WITH EXTENDED RANGE RETURN IS TRUNCATED SUCH THAT

\ ITS VALUE IS ITS CLOSEST RANGE. IN THE A/D CONVERTER ARRAY

\ THIS MEANS THE DIFFERENCE IN RANGE BIN VALUE MUST BE

\ GREATER THAN TWO. IF THERE ARE TWO TARGETS SIDE-BY-SIDE

\ AND OCCUPYING TWO ADJACENT RANGE BINS, ONLY THE CLOSEST

\ TARGET WILL BE IDENTIFIED UNTIL THEIR SEPARATION SPANS

\ MORE THAN TWO BINS.

: TARSEP

0 HITS :=

I HDX :=

IPT ICT - NDX :=

NDX TARA [ HDX ] :=

NDX 1 + IPT =

IF

EXIT

THEN

BEGIN

FILSEG [ NDX , 2 ]

NDX I + ND× :=

NDX IF'T =

IF

EXIT

THEN

FILSEG [ ND× , 2 ] - 2 >

IF

1 HDX + HDX :=

NDX TArA [ HDX ] :=

THEN

NDX [ + IF'T =

UNTIL

\

\ POINTEF: AP_:AY W_:ITE ROUTINE

: WRARAY

HITS O DO I

1 ÷ II :=

II TOTHITS + ITEMP :=

TARA [ II ] F'TAR [ ITEMP ] :=

LOOP

ASYST Ve_sio,_ 1.5
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\

\ FDR ND_ THIS IS RI.ANN]NG A5 THE I"IAZN CALLING SEGMENT.
READF

INITIALIZE

I COMMENT>

"TYPE

CR ." INPUT SUBFILE NUMBER TO BE PROCESSED: "
BEGIN

#INPUT NOT

WHILE

" INVALID NUMBER, REENTER: "

REPEAT

SFILNUM :=

SFILNUM SUBFILE

FILE>UNNAMED.ARRAY

FILSEG :=

FILSEG XSECT[ ! , 1 ] TME :=

TME [ I ] ISTART :=

ISTART 0 =

IF

CR ." THIS FILE SEGMENT IS EMPTY. "

ELSE

SIZEFIND

I IF T :=

BEGIN

0 TARA :=

ONEPULSE

TARSEP

TARA TRUE. INDICES

I []DIM HITS := DROF'

WRARAY

HITS TOTHITS + TOTHITS :=

IPT ILIM >

UNTIL

THEN

CR ." JOB IS DONE! "

F9 FUNCTION.KEY.DOES OPENF

FIO FUNCTION.KEY.DOES READF

F5 FUNCTION. KEY.DOES FILE.CLOSE

ASYST Verslor_ 1.5
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OF _R QUA/_,rl_,

8 4 FIX.FORMAT

REAL DIM[ 100 , 5 ] ARRAY XAB \ ABSCISSA,RMEAN, RSIG,AMEAN,ASI___
INTEGER DIM[ 100 , 112 ] ARRAY DSET

INTEGER DIM[ 112 , 2 ] ARRAY MVSET

DIM[ 112 ] DMA.ARRAY INDATA

REAL DIM[ 112 ] ARRAY TME

REAL DIM[ 56 ] ARRAY RMEAN

REAL DIM[ 56 ] ARRAY RSIG

REAL DIM[ 56 ] ARRAY AMEAN

REAL DIM[ 56 ] ARRAY ASIG

INTEGER SCALA_ II

INTEGER SCALAR JJ

INTEGER SCALAR RBIN

INTEGER SCALAR ABIN

INTEGER SCALAR DCOUNT

6 STRING PRETAPE

16 ST_ING TAPENAME

" TAPE: " PRETAPE ":=

6 STRING PRESEG

16 STRING TESTSEG

" TEST: " PRESEG ":=

P'_' STRING LABXAB

TME []RAMP

TME 4.625 _ 4.625 - TME :=

: INITIALIZE

0 II :=

0 JJ :=

0 I A/D. TEMPLATE ZERO. ONLY

1 A/D.GAIN

.037 CONVERSION.DELAY

EXT.TRIG

A/D. INIT

: DMAZERO

0 INDATA :=

INDATA DMA.TEMPLATE.BUFFEE

A/D. INIT

ZERO.ONLY A/D. IN>ARRAY(DMA)

BEGIN ?DMA.ACTIVE NOT UNTIL

: SMAF

GRAPHICS. D ISF'LAY

CURSOR. OFF

" *" SOLID_<SYMBOL

TME SUB[ I , 112 , 2 ]

INDATA SUB[ 1 , 112 , 2 ]

.0012207

XY.AUTO.PLOT

NORMAL.COORDS

.4 .05 POSITION

" RANGE (FEET) " LABEL

270 LABEL.DIR

.01 .85 POSITION

" RANGE CHAN VOLTS " LABEL

ASYST Version 1.5
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O LABEL. DI Fc

O O POSITION

: DI FMAP

GF:APH I CS. DISPLAY

CURSOR. OFF

" I" SOLID&SYMBOL

TME SUB[ 2 , 112 , 2 ]

INDATA SUB[ 2 , 112 , 2 ]

. O012207

XY. AUTO. PLOT

NORMAL. COORDS

.4 .05 POSITION

" RANGE (FEET_ " LABEL

270 LABEL. DIF:

.Of .85 POSITION

" _NGLE CHAN VDLTS " LABEL

0 LABEL.DIF

(1 0 POSITION

: INPNUM

BEGIN

#INPUT NOT

WHILE

INVALID NUMBEF, _'EENTEF: "

REPEAT

GETSET

BEGIN

1 JJ + JJ :=

DMAZER0

112 0 DO I

1 ÷ II :=

INDATA [ I] ] DSET [ JJ , II ] :=

LOOP

100 JJ :

UNTIL

: COLLECT

C:_ ." ENTEF THE VALUE OF THE ABSCISSA: INF'NUM

DCOUNT I ÷ DCOUNT ::

XAB [ DCOUNT , ! ] :=

DSET XSE,_-T[ ' F_It; ] DUF
F

MEAN .0012207 _ XA5 [ D(OUNI , :' ] ---

SAMPLE.VARTIANI_-E SOFT .0<'12207

XAB [ DCOUNT , _ ] :=

DSET XSECT[ ' ABIN ] DUF

MEAN .0012207 ;_ XAB [ DCOUNT , 4 ] :=

SAMPLE.VArIANCE SOET .0012207

XAB [ DC:OUNT , .5 ] :=

: ONEBIN

CE . " INPUT THE RANGE BIN NUMBER ( 1 - 55 ): "

INPNUM

ASYST Version 1.5
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O'RIG_rAi; PA_;Z N

OF POOR QU_cLI'I_

2 I I - RBIN :=

RBIN 111 >

IF

CR ." RANGE BIN TOO LARGE, 1 TO 55 ONLY! "

INPNUM

THEN

RBIN 1 + ABIN :=

DSET XSECT[ ! , RBIN ] DUP

C_ ." MEAN TARGET VOLTAGE = " MEAN .0012207 _ .

CF ." STANDARD DEVIATION ( IN VOLTS ) = "

SAMPLE.VARIANCE SORT .0012207 I . CR

DSET XSECT[ ! , ABIN ] DUP

CR ." MEAN ANGLE VOLTAGE = " MEAN .0012207

CR ." STANDARD DEVIATION ( IN VOLTS ) = "

SAMPLE.VARIANCE SORT .0012207 • .

CF ." IF YOU WISH TO SAVE FOR PLOTTING ENTER A 1 "

CK " OTHEPWISE ENTER A O. "

INFNUM

0 -

IF

EXIT

THEN

C OLLEC T

: SUMMAgIZE

0 MVSET :=

0 JJ :=

BEGIN

1 JJ + JJ :=

DSET XSECT[ ' . JJ ] DUP

MEAN MVSET [ JJ , 1 ] :=

SAMPLE.VARIANCE SQFT MVSET [ JJ , 2 ] :=

112 JJ =

UNTIL

MVSET .0012207 _ SUB[ I , 112 , 2 ; I , 2 , I ] DUP

XSECT[ , I ] RMEAN :=

XSECT[ ' , 2 ] RSIG .'=

MVSET 0C, 12207 _ SUB[ 2 , 112 , 2 ; I , _" I ] DUP

XSEET[ , i ] AMEAN :=

XSECT[ ' , 2 ] ASIG :=

: RANHF

AXIS.DEFAULTS

HP747(,

PLOTTEF.DEFAULTS

" _" SOLID&SYMBOL

TME SUB[ I , 112 , 2 ] DUP

RMEAN

XY. AUTO. PLOT

" o °' SOLID&SYMBOL

RSIG

XY. DATA.PLOT

.015 .058 CHAR.SIZE

NORMAL.COOF:DS
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.4 .075 POSITION

" RANGE (FEET) " LABEL

)0 LABEL.DIR

.07 .35 POSITION

" RANGE CHAN VOLTS " LABEL

0 LABEL.DIR

.007 .04 CHAR.SIZE

•85 .3 POSITION

" _ MEAN VALUE " LABEL
.85 .275 POSITION

" 0 STANDARD DEV. " LABEL

0.4 0.9 POSITION

.012 .04 CHAR.SIZE

PRETAPE TAPENAME "CAT

LABEL

.4 .87 POSITION

PRESEG TESTSEG "CAT

LABEL

: ANGHP

AXIS.DEFAULTS

HP7470

PLOTTER.DEFAULTS

" _" SOLID&SYMBOL

TME SUB[ 2 , 112 , 2 ] DUP

AMEAN

XY,AUTO.PLOT

" o" SOLID&SYMBOL

ASIG

XY.DATA. PLOT

,015 .058 CHAR.SIZE

NORMAL.COORDS

.4 .075 POSITION

" RANGE (FEET) " LABEL

90 LABEL. DIR

.07 .35 POSITION

" ANGLE CHAN VOLTS " LABEL

0 LABEL.DIR

.007 .04 CHAR.SIZE

.85 .3 POSITION

" _ MEAN VALUE " LABEL

.85 .275 POSITION

" 0 STANDARD DEV. " LABEL

0.4 0.9 POSITION

.012 .04 CHAR.SIZE

PRETAPE TAPENAME "CAT

LABEL

.4 .87 POSITION

PRESEG TESTSEG "CAT

LABEL

: ANOTATE

CR ." ENTER TAPE ID ( 16 CHAR MAX ) "

"INPUT TAPENAME ":=
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CR ." ENTEP TEST SEGMENT OR SUMMARY (16 LIMIT) "

"INPUT TESTSEG ":=

i

: CRANHP

AXIS.DEFAULTS

HP7470

PLOTTER.DEFAULTS

" _" SOLID&SYMBOL

XAB SUB[ 1 , DCOUNT , I ; i , 5 , I ] DUP

XSECT[ ! , 1 ] SWAP

XSECT[ ! , 3 ]

XAB SUB[ 1 , DCOUNT _ 1 ; I , 5 , 1 ] DUP

XSECT[ f , 1 ] SWAP

XSECT[ ! , 2 ]

XY.AUTO.PLOT

" O" SOLID&SYMBOL

XY.DATA.PLOT

.015 .058 CHAR.SIZE

CR ." ENTER ABSCISSA AXIS NAME: (22 CHAR MAX)

"INPUT LABXAB ":=

NORMAL.COORDS

.4 .075 POSITION

LABXAB LABEL

90 LABEL.DIR

.07 .35 POSITION

" RANISE CHAN VOLTS " LABEL

0 LABEL.DIR

.007 .04 CHAR.SIZE

.85 .3 POSITION

" • MEAN VALUE" LABEL

.85 .275 POSITION

" O STANDARD DEV. " LABEL

.4 .9 POSITION

.012 .04 CHAR.SIZE

PRETAPE TAPENAME "CAT

LABEL

.4 .87 POSITION

PRESEG TESTSEG "CAT

LABEL

: CANGHF

AXIS.DEFAULTS

HF'7470

F LOTTEF;.DEFAULTS

" _;" SOLID&SYMBOL

XAB SUB[ I , DCOUNT , 1 ; 1 , 5 , I ] DUP

XSECT[ ! , I ] SWAP

XSECT[ ! , 5 ]

XAB SUB[ 1 , DCOUNT , I ; 1 , 5 , 1 ] DUP

XSECT[ ! , 1 ] SWAP

XSEC:T[ ! , 4 ]

XY.AUTO.PLOT

" O" SOLID&SYMBOL

XY.DATA.PLOT
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• O1_ .058 CHAR.SIZE

C_ ." ENTER ABSCISSA AXIS NAME:

INPUT LABXAB "i=

NORMAL.COORDS

.4 .075 POSITION

LABXA_ LABEL

9O LA_EL.DIR

.O7 .35 POSIIION

" ANGLE CHAN VOLTS " LABEL

O LABEL.DIR

.007 .04 CHAR.SIZE

.85 .3 POSITION

" _ MEAN VALUE " LABEL

.85 .275 POSITION

" 0 STANDARD DEV. " LABEL

.4 .9 POSITION

.01_ .04 CHAF.SIZE

F'_ETAPE TAPENAME "CAT

LABEL

.4 .87 POSITION

F'_'ESEG TESTSEG "CAT

LABEL

: MAIN

INITIALIZE

GETSET

SUMMAFIZE

CF " JJ = " JJ

F9 FUNCTION.KEY.DOES MAIN

F10 FUNCTION.KEY.DOES SMAF'

F7 FUNCTION. KEY.DOES DIFMAP

F8 FUNCTION.KEY.DOES ONEBIN

FI FUNCTION.FEY.DOES PANHF

F2 FUNCTION.KEY.DOES ANGHF

F3 FUNCTION.ILEY.DOES CRANHF

F4 FUNCTION.KEY.DOES CANGHF

F5 FUNCTION.LEY.DDES ANOTATE

(22 CHAR MAX)
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\ CRASH AVOIDANCE RADAR

\ TEST SEGMENT PROCESSING SOFTWARE

WXC 12/11/85

\ IT IS WRITTEN TO ACQUIRE A COMPLETE TEST SEQUENCE OF DATA AND

\ STORE IT AS A SIGLE-SEGMENTED DATA FILE ON DISkC. THIS EASES

\ THE JOB OF LATER ACCESSING THE DISK FILE FOR DATA MANIPULATING

\ AND/OR PLOTTING. THE MAXIMUM TRANSMITTED PULSES, ASSUMING A

\ SINGLE TARGET RETURN PER TRANSMISSION, IS ABOUT 2000 PULSES.

\ THIS CORRELATES TO A TEST SEGMENT TIME OF 176 SECONDS.

\ SHORTER TEST SEGMENTS CAN BE ACCOMODATED BY STOPPING THE TAPE

\ AND DOING CONTROL/BREAK. THE VARIABLE ICOUNT WILL INDICATE

\ THE SIZE OF THE DATA ARRAY.

\

\ DEFINE INPUT & OUTPUT DATA ARRAYS AND COUNTERS

DIM[ 112 ] DMA.ARRAY INDATA

INTEGER DIM[ 2020 , 4 ] ARRAY OUTDAT

INTEGER SCALAR EYE

INTEGEP SCALAR HITS

INTEGER SCALAR BNUM

INTEGER SCALAR ICOUNT

INTEGER SCALAR CNDX

INTEGER SCALAR BFIRST

\

\ DEFINE HIT ARRAY, THRESHOLDS AND RANGE/ANGLE INDICES

\ SET UF FOF OUTF'UT FILENAME

INTEGE_: DIM[ 56 ] ARRAY HARRAY

INTEGER SCALAR THRSH

INTEGEF" SCALAR RNDX

INTEGER SCALAR ANDX

INTEGER SCALAR THRSH1

14 STRING FILENAME

\

\ SET UP THE A/D CONVERTER PARAMETERS

0 1 A/D.TEMFLATE ZERO.ONLY

1A/D. GAIN

.037 CONVERSION. DELAY

EXT.TRIG

A/D. INIT

INDATA DMA. TEMPLATE.BUFFER

\

\ SET THO:ESHOLDS AND ZERO ARRAYS/CONSTANTS

: INITIALIZE

0 EYE : =

_Z, ICOUNT :=

00UTDAT :=

0 HARRAY :=

0 HITS :=

C:R ." INPUT THRESHOLD VALUE: "

BEGIN

#INPUT NOT

WHILE

°' INVALID NUMBER, REENTER: "

REPEAT
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DUP THRSHI :=

1 - THRSH :=

\

\ BEGIN THE DATA ACQUISITION LOOP UNTIL MEMORY FULL

: SCANSTORE

BEGIN

\

\ TA;_E A DATA SET ( FILL INDATA ARRAY )

A/D. INIT

ZERO.ONLY A/D. IN>ARRAY(DMA)

BEGIN ?DMA.ACTIVE NOT UNTIL

\ UPDATE TRANSMITTED PULSE COUNTER

BNUM I + BNUM :=

\ SCAN THE INPUT ARRAY FOR NUMBER OF HITS

THRSH11NDATA [ I ] :=

\ SET VARIABLE THRESHOLD INSIDE MAIN BANG HOLDOVER

THRSH INDATA [ 3 ] := \ 3 IS THROWN AWAY ALWAYS

THRSH INDATA [ 5 ] := \ 5 IS THROWN AWAY ALWAYS

THRSH INDATA [ 7 ] := \ 7 IS THROWN AWAY ALWAYS

THRSH INDATA [ 9 ] := \ 9 IS THROWN AWAY ALWAYS

THRSH INDATA [ 11 ] := \ 11 IS THROWN AWAY ALWAYS

THRSH INDATA [ 13 ] := \ 15 IS THROWN AWAY ALWAYS

THRSH |NDATA [ 111 ] := \ 111 IS THROWN AWAY ALWAYS

INDATA SUB[ I , 11_ , 2 ] THRSH [>]

TRUE.INDICES

1 []DIM HITS :=

REV[ I ]

2 _: 1 -

HARRAY SUBE i , HITS , 1 3 :=

HITS 1 >

\ IF NUMBER OF HITS 3 ONE THEN DO ONE LESS

\ (HIT A_AY HAS BEEN REVERSED)

IF

HITS I - HITS :=

THEN

\ ENTER MEMOF;Y WFITE LOOF'

HITS 0 DO I

I + EYE : =

ICOUNT I + ICOUNT :=

BNUM

HAR_AY [ EYE ]

DUF' DUF

RNDX : =

1 + ANDX :=

INDATA [ ANDX ]

INDATA [ RNDX ]

\ WRITE DATA TO MEMORY

OUTDAT [ ICOUNT , 4 ] :=

OUTDAT [ ICOUNT , 3 ] :=

OUTDAT [ ICOUNT , 2 ] :=

OUTDAT [ ICOUNT , I ] :=

LOOP

0 HARRAY SUB[ ] , HITS , I ] :=

ASYST Versiot_ 1.5

Page 2 c:testseg.car 03/18/86 10:07

9-38



DI.IG'INAI, PA'C,g 1_

DE POOR QUALITY'

\ EXIT WHEN >= TO 2000

ICOUNT 2000 >= UNTIL EXIT

\

\ ROUTINE TO INVOKE WRITING THE COLLECTED DATA TO

X A DISK FILE. FILE SIZE IS BASED ON THE ACTUAL DATA

\ COUNT "ICOUNT" AND WILL BE APPROXIMATELY 60,000 BYTES

: WRFILE

FILE.TEMPLATE

1 COMMENTS

INTEGER DIM[ 2020 , 4 ] SUBFILE

END

CR ." TO WRITE THE DATA TO DISK ENTER A 1 "

CR ." OTHERWISE ENTER A ZERO. "

BEGIN

#INPUT NOT

WHILE

" NOT A NUMBER, REENTER: "

REPEAT

0 =

IF EXIT

THEN

CR ." NAME OF DATA FILE _ "

"INPUT FILENAME ":=

FILENAME DEFEP_ FILE.CREATE

FILENAME DEFER} FILE.OPEN

CR ." YOU HAVE 64 CHARACTERS TO INPUT THE TOTAL DATA COUNT "

CR ." (ICOUNT); THE FIRST TRANSMITTED PULSE NUMBER; AND THE "

CR ." LAST TRANSMITTED PULSE NUMBER. INCLUDE SOME TEST NAME ALSO:

CR ." REMEMBER A CARRIAGE RETURN ENDS THIS INPUT! "

CR

"INPUT

1 >COMMENT

OUTDAT ARFAY'FILE

FILE.CLOSE

CR

\

\ THE EXECUTIVE ROUTINE THAT ACTUALLY MAKES ALL THIS RUN

\ IN A SEQUENCE.

: EXEC

INITIALIZE

SCANSTORE

CR ." THE LAST DATA SET NUMBEE IN MEMORY WAS " ICOUNT .

WRF ILE

CR

F9 FUNCTION.KEY.DOES EXEC
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\ COLLISION AVOIDANCE RADAR DATA PROCESSING PROG

\ TARGET DISCRIMINATE & PLOT PROGRAM

\ SECOND LEVEL RADAR DATA PROCESSING - - TARGET ID

\ WXC 12/11/85

\ THIS SOFTWARE ACCESSES DATA FILES WRITTEN BY TESTSEG.CAR AND

\ ESTABLISHES IDENTITIES OF INDIVIDUAL TARGETS SEEN DURING THE

\ DATA RUN. TARGET RANGE EXTENT IS ABOLISHED AND A TARGET IS

\ DEFINED BY ITS CLOSEST POINT.

\

\ THE TARGET IS DENOTED BY A POINTER WHICH SHOWS

\ WHERE THE VALID TARGETS ARE WITHIN THE ORIGINAL

\ DATA ARRAY OR FILE SEGMENT.

8 4 FIX.FORMAT

INTEGER DIM[ 2020 , 4 ] ARRAY FILSEG

INTEGER DIM[ 20 ] ARRAY TARA

INTEGER DIM[ 2020 ] ARRAY TM1

INTEGER DIM[ 2020 ] ARRAY TME

INTEGER DIM[ 2020 ] ARRAY RAN

INTEGER DIM[ 2020 ] ARRAY ANG

INTEGER DIM[ 2020 ] ARRAY PTAR

INTEGER SCALAR SFILNUM

INTEGER SCALAR ISTART

INTEGER SCALAR ILIM

INTEGER SCALAR; IC

INTEGER SCALAR %CT

INTEGER SCALAR IPT

INTEGER SCALAR TSTART

INTEGEF: SCALAR HDX

INTEGER SCALAR NDX

INTEGER SCALAR II

INTEGER SCALAR HITS

INTEGER SCALAR TOTHITS

INTEGER SCALAR ITEMF

INTEGER SCALAF: 13

INTEGE_ SCALAR 24

FILE.TEMPLATE

1 COMMENTS

INTEGER DIM[ 2020 , 4 ] SUBFILE

END

14 STRING FILENAME

1 STRING SYMPLT

_ STRING TESTSEG

: OPENF

C:_I ." INPUT NAME OF DATA FILE; "

"INPUT FILENAME ":=

FILENAME DEFER/ FILE.OPEN

\

\ SET UP AND RE-ESTABLISH CONSTANTS/COUNTERS

: INITIALIZE

O SFILNUM :=

0 ISTART :=

0 ILIM :=

0 IC :=
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O ICT : =

0 IPT ==

O TSTART t -

0 HDX : =

C) NDX : =

O II :=

O HITS :=

0 FILSEG :=

0 TARA : =

0 TMI :=

0 TME : =

0 RAN : =

C) ANG : =

0 TOTHITS :=

0 PTAR : =

\

: SMAP

GRAPHICS. DISPLAY

CURSOR. OFF

DOTTED

TME SUB[ 1 , TOTHITS ] .088

RAN SUB[ ! , TOTHITS ] 4.625

XY. AUTO. PLOT

NORMAL. COORDS

.4 .05 POSITION

" TIME (SEC) " LABEL

270 LABEL. DIF

.01 .85 POSITION

" RANGE (FEET) " LABEL

0 LABEL. DIR

0 0 POSITION

: D I FMAF"

GRAPHICS. DISPLAY

CURSOF. OFF

DOTTED

TME SUB[ I , TOTHITS ] .088 :i

ANG SUB[ I , TOTHITS ] .0012207 i_

XY. AUTO. PLOT

NORMAL. COOF'DS

.4 .05 POSITION

" TIME cSEC _ " LABEL

270 LABEL. DI F

.01 .85 POSITION

" ANG CHAN VOLTS " LABEL

0 LABEL.DIR

0 0 POSITION

: ANNOTATE

CR ." ENTER THE TEST TITLE/NAME (22 CHAR MAX) "

"INPUT TESTSEG ":=

CR ." INPUT THE HP PLOT SYMBOL DESIRED (PT PLOTS ONLY HERE) "

"INPUT SYMPLT ":=
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: RANHP

_XIS.DEFAULTS

HP7470

PLOTTER. DEFAULTS

SYMPLT SYMBOL

TME SUB[ I , TOTHITS ] .088 _

RAN SUB[ I , TOTHITS ] 4.625 _:

XY.AUTO. PLOT

.015 .058 CHAR.SIZE

NORMAL.COORDS

.4 .075 POSITION

" TIME (SEC) '" LABEL

90 LABEL.DIR

.07 .35 POSITION

" RANGE (FEET) " LABEL

0 LABEL.DIR

.4 .9 POSITION

.012 .04 CHAR.SIZE

TESTSEG LABEL

: ANGHP

AXIS.DEFAULTS

HF7_70

PLOTTER.DEFAULTS

SYMF'LT SYMBOL

TME SUB[ 1 f TOTHITS ] .088

ANG SUB[ I , TOTHITS ] .0012207 _;

XY.AUTO.PLOT

.015 .058 CHAR.SIZE

NORMAL.COORDS

.4 .075 POSITION

" TIME (SEE:) " LABEL

9O LABEL.DIR

.07 .35 POSITION

" ANG CHAN VOLTS " LABEL

O LABEL.DIR

.4 .9 POSITION

TESTSEG LABEL

\

\ SIZEFIND EXAMINES THE FILE SEGMENT JUST READ TO ESTABLISH

\ THE NUMBEF OF ENTRIES. THE FULL SEGMENT IS 766 4-ELEMENT

\ ENTRIES. THE RESULT OF SIZEFIND IS THE PARAMETEF: ILIM.

\ IT MAY BE 766 Ok LESS. PROCESSING OF DATA FROM THE SEGMENT

\ SHOULD USE ILIM TO PROPERLY TRUNCATE THE FILE.

: SIZEFIND

TMI [ ! ] ISTART :=

BEGIN

IC I + IC :=

IC 2020 >

IF

0 IC :=

2020 ILIM :=
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OIl, POOR QUALITy"

EXIT

THEN

TMI [ IC ] ISTART <

IF

I[ I - ]LIM :=

O IC :=

EXIT

THEN

AGAIN

\

\ ONEPULSE ESTABLISHES ALL THE RADAR RETURNS THAT ARE

\ ASSOCIATED WITH A TRANSMITTED PULSE. ICT IS THE

\ NUMBER OF RETURNS FOR THAT TRANSMITTED PULSE. THE

\ PARAMETER IPT IS THE CORRECT POINTER FOR THE NEXT FILE

\ SEGMENT ELEMENT.

: ONEF'ULSE

0 ICT :=

TM1 [ IPT ] TSTART :=

IPT ILIM =

IF

1 IPT + IPT :=

I ICT + ICT :=

EXIT

THEN

BEGIN

UNTIL

\

1 IFT + IPT :=

IF'T ILIM

IF

EXIT

THEN

I ICT + ICT :=

IPT ILIM =

IF

TMI [ IF T ] TBTA_T :

IF

EXll

THEN

IPT I + IF T :=

ICT 1 + ICT :=

EXIT

THEN

TM1 [ IPT ] TSTAFT i:

\ TA_TSEF' IS THE ROUTINE TO EXAMINE ALL RETURNS FROM A

\ SINGLE TRANSMITTED PULSE AND IDENTIFY INDIVIDUAL TARGETS.

\ A TARGET WITH EXTENDED RANGE RETURN IS TRUNCATED SUCH THAT

\ ITS VALUE IS ITS CLOSEST RANGE. IN THE A/D CONVERTER ARRAY

\ THIS MEANS THE DIFFERENCE IN RANGE BIN VALUE MUST BE

\ GREATER THAN TWO. IF THERE ARE TWO TARGETS SIDE-BY-SIDE

\ AND OCCUPYING TWO ADJACENT RANGE BINS, ONLY THE CLOSEST

\ TARGET WILL BE IDENTIFIED UNTIL THEIR SEPARATION SPANS
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\ MORE THAN TWO BINS.

: TARSEP

O HITS :,,

I HDX I=

IPT ICT - NDX :=

NDX TARA [ HDX ] :=

NDX 1 + IPT =

IF

EXIT

THEN

BEGIN

FILSEG [ NDX , 2 ]

NDX ! ÷ NDX :=

NDX IF'T =

IF

EXIT

THEN

FILSEG [ NDX , ---'] - 2 >

IF

I HDX ÷ HDX :=

NDX TARA [ HDX ] -=

THEN

NDX I + IPT =

UNTIL

\

\ POINTEF: ARRAY WF:ITE ROUTINE

: WPA;:'AY

HITS O DO I

1 * II :=

II TOTHITS + ITEMP :=

TARA [ II ] PTAR [ I TEMP ] :=

LOOP

\

: READF

INITIALIZE

I COMMENT >

FILE >UNNAMED. AI_'FAY

F ILSEG :=

FILSEG XSECT[ ' I ] TMI :=

TMI [ ! ] ISTART :=

I SIAFT 0 =

IF

C:F: ." THIS FILE SEGMENT IS EMPTY. "

ELSE

SIZEFIND

THEN

: MAIN

INITIALIZE

READF

1 IPT : =

BEGIN
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0 TARA :=

ONEPULSE

TARSEP

TARA TRUE. INDICES

1 []DIM HITS := DROP

WRARAY

HITS TOTHITS + TOTHITS :=

IPT ILIM >

UNTIL

0 I3 :=

TOTHITS 0 DO I

I + 13 :=

PTAR [ 13 ] I4 :=

FILSEG [ 14 , 1 ] TME [ 13 ] :=

FILSEG [ 14 , 2 ] RAN [ I3 ] :=

FILSEG [ 14 , 3 ] ANG [ I3 ] :=

LOOF

CP ." JOB IS DONE'

F9 FUNCTION.KEY.DOES OPENF

FIO FUNCTION.KEY.DOES MAIN

F7 FUNCTION.KEY.DOES SMAP

F8 FUNCTION.KEY. DOES DIFMAF"

FI FUNCTION.KEY.DOES F_ANHF'

FC FUNCTION.KEY.DOES ANGHF

F5 FUNCTION.KEY,DOES FILE.CLOSE

F6 FUNCTION.KEY.DOES ANNOTATE
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\ COLLISION AVOIDANCE RADAR DATA PROCESSING PROG

\ WXC 1/7/86

THIS SOf'TWARE ACCESSES DATA IrILES WRITTEN BY TESTSEG.CAR AND

B 4 FIX.FORMAT

INTEGER DIM[ 2020 , 4 ] ARRAY FILSEG

INTEGER DIM[ 2020 ] ARRAY TMI

INTEGER DIM[ 2020 ] ARRAY RAN

INTEGER DIM[ 2020 ] ARRAY ANG

INTEGER DIM[ 2020 ] ARRAY PTAR

INTEGER SCALAR SFILNUM

INTEGER SCALAR ISTART

INTEGER SCALAR ILIM

INTEGER SCALAR IC

INTEGER SCALAR TSTART

INTEGER SCALAR RBIN

INTEGER SCALAR ICT

INTEGER SCALAR IOUT

INTEGER SCALAR ITEMP

FILE. TEMPLATE

1 COMMENTS

INTEGER DIM[ 2020 , 4 ] SUBFILE

END

14 STF_ING FILENAME

1 STRIN=3 SYMF'LT

_'_" STRING TESTSEG

: OPENF

CF.. " INPUT NAME OF DATA FILE? "

"INF'UT FILENAME ":=

FILENAME DEFER:;, FILE.OPEN

\

\ SET UP AND RE-ESTABLISH CONSTANTS/COUNTERS

: INITIALIZE

(:)SF ILNUM : =

0 I START : =

0 ILIM :=

0 IC :=

0 TSTART :=

0 FILSEG :=

0 TMI :=

O RAN : =

0 ANG : =

0 F TAF : =

0 RBIN :=

0 ICT :=

0 IOUT :=

0 I TEMF :=

\

: SMAR

GRAPHICS. DISPLAY

CURSOR. OFF

DOTTED

TMI SUB[ 1 , IOUT ] .088 _
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RAN SUB[ I , IOUT ] 4.625

XY.AUTO. F'LOT

_ORMAL.COORDS

.4 .05 POSITION

" TIME (SEC) " LABEL

270 LABEL.DIR

.01 .85 POSITION

" RANGE (FEET) " LABEL

0 LABEL.DIR

O O POSITION

: DIFMAF'

GRAPHICS.DISPLAY

CURSOF.OFF

DOTTED

TMI SUB[ I , IOUT ] .088

ANG SUB[ 1, IOUT ] .0012207

XY.AUTO. PLOT

NORMAL.COORDS

.4 .05 POSITION

" TIME (SEC_ " LABEL

270 LABEL.DIR

.01 .85 POSITION

" ANG CHAN VOLTS " LABEL

0 LABEL.DIR

0 0 POSITION

: ANNOIATE

CR ." ENTER THE TEST TITLE/NAME (22 CHAR MAX) "

"INPUT TESTSEG ":=

CR ." INPUT THE HP PLOT SYMBOL DESIRED (PT PLOTS ONLY HERE)

"INPUT SYMF'LT ":=

: RANHP

AXIS.DEFAULTS

HF747(,

PLOTTER.DEFAULTS

SYMF'LT SYMBOL

TMI SUB[ I IOUT ] .088
v

PTAR SUB[ I , IOUT ] .0012207

XY.AUTO.PLOT

.015 .058 CHAR.SIZE

NOF_MAL.COOPDS

.4 .075 POSITION

" TIME (SEC p " LABEL

90 LABEL.DIR

.07 .35 POSITION

" RANGE CHAN VOLTS " LABEL

0 LABEL.DIR

.4 .9 POSITION

.012 .04 CHAR.SIZE

TESTSEG LABEL

: ANGHF'
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AXIS.DEFAULTS

HP7470

_LOTTER. DEFAULTS

SYMPLT SYMBOL

TMI SUB[ 1 , IOUT ] .088

ANG SUB[ 1 , IOUT ] .0012207

XY.AUTO.PLOT

.015 .058 CHAR.SIZE

NORMAL.COORDS

.4 .075 POSITION

" TIME (SEC) " LABEL

9O LABEL.DIR

.07 .35 POSITION

°' ANG CHAN VOLTS " LABEL

0 LABEL.DIR

.4 .9 POSITION

TESTSEG LABEL

\

\ SIZEFIND EXAMINES THE FILE SEGMENT JUST READ TO ESTABLISH

\ THE NUMBER OF ENTRIES. THE FULL SEGMENT IS 766 4-ELEMENT

\ ENTRIES. THE RESULT OF SIZEFIND IS THE PARAMETER ILIM.

\ IT MAY BE 766 OF LESS. PROCESSING OF DATA FROM THE SEGMENT

\ SHOULD USE ILIM TO PROPERLY TRUNCATE THE FILE.

: SIZEFIND

TMI [ 1 ] ISTART :=

BEGIN

IC I + IC :=

IC 2020 >

IF

0 IC :=

2020 ILIM :=

EXIT

THEN

TMI [ IC ] ISTART K

IF

IC I - ILIM :=

0 IC :=

EXIT

THEN

AGAIN

\

: READF

INITIALIZE

I COMMENT_

FILE>UNNAMED.ARRAY

FILSEG :=

FILSEG XSECT[ ! , 1 ] TM1 :=

TMI [ I ] ISTART :=

ISTAPT O =

IF

CR ." THIS FILE SEGMENT IS EMPTY. "

ELSE
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SIZEFIND

THEN

: PICKOUT

BEGIN

I ICT + ICT :=

ICT 2020 >=

IF

EXIT

THEN

FILSEG [ ICT , 2 ] RBIN =

IF

1 IOUT + IOUT :=

FILSEG [ ICT , I ] TMI [ IOUT ] :=

FILSEG [ ICT , 2 ] RAN [ IOUT ] :=

FILSEG [ ICT , 3 ] ANG [ IOUT ] :=

FILSEG [ ICT , 4 ] PTAR [ IOUT ] :=

THEN

ILIM 10 - ITEMP :=

ICT ITEMP >=

UNTIL

: MAIN

INITIALIZE

PEADF

CR ." INPUT THE DESIRED RANGE BIN VALUE:

BEGIN

#INPUT NOT

WHILE

" INVALID NUMBE_, RE-ENTER:

REPEAT

RBIN :=

P I CKOUT

0 PTAR [ I ] : :

5. PTAF: [ 2 ] : =

OANG[1]: =

5. ANG [ 2 ] :=

CR ." MAIN IS DONE'

F9 FUNCTION.KEY.DOES OPENF

FIO FUNCTION.KEY.DOES MAIN

F7 FUNCTION.KEY.DOES SMAP

F8 FUNCTION.KEY.DOES DIFMAF

F1 FUNCTION.KEY.DOES F;ANHF

F2 FUNCTION.KEY.DOES ANGHF'

F5 FUNCTION._EY.DOES FILE.CLOSE

F6 FUNCTION.KEY.DOES ANNOTATE

ASYST Version 1.5

Page 4 c:selbin.car 03/17/86 09:26
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SECTION I0

SYSTEMS TEST

A general test plan for testing the CAR radar system was outlined in the

memorandum of October 18, 1985, enclosed in the appendix. The system test
effort was designed to fulfill these objectives. However, when it became

obvious that the system could not perform adequately, continuance of the

testing served no useful or evaluative purpose and the testing ceased.

This section will address the test environment, tests conducted, and data
summaries.

TEST RANGE DESCRIPTION

The test range used for the systems tests is located at the rear of the

facility in which the radar was developed. The range begins with a narrow
two-lane road running west for approximately 600 feet. At the end of the

600-foot road the concrete broadens to a considerable expanse and continues
west for some 1800 additional feet. When viewed from the air, the two-lane

road appears as the shaft of an arrow and the broadened concrete area as an

arrowhead. The land is flat and without trees. Thus, there were minimal
clutter returns during the tests.

Some 500 feet of the two-lane road was measured and marked at range inter-
vals of 50 feet. At the zero range mark, the footprint of the four tires

of the van carrying the radar was painted with the van looking west along
the centerline of the road. From this vantage point all the static cali-

bration data was taken as well as some of the dynamic data. In general,
the entire 2400-foot range was used to acquire the dynamic data taken.

HARDWARE CONFIGURATION

Figure 9-1 in the previous section shows the initial hardware configuration
used during systems tests. Many static tests for calibration were done in

this configuration and all the dynamic tests were done this way.

As the next sections will discuss, the reduction of system measurement errors

to an acceptable level required that the VCR be removed from the system.

Since no other recording medium was available, the AT&T 6300 and peripherals
had to be installed in the radar van. All testing after this installation
was with the radar van stationary.

ANGLE CALIBRATION TESTING

The initial end-to-end system test for the CAR radar was the angle channel
calibration to establish the transfer function from voltage in the difference

(angle) channel to LOS angle to the target in degrees. The target for these
tests was a Luneburg lens with wide angular response. It was chosen for this

spatial property plus the fact that it appears as a point target.
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Figure 10-I shows the results of the first attempt at calibrating the angle
channel. The Luneburg lens was taken out to a range of 300 feet and moved
from -8.5 degrees (left=minus) to +6.5 degrees. At each angle location a
sample set of 100 A/D converter arrays was taken and the meanand standard
deviation of that sample set calculated. The accumulation of these means
and standard deviations are the points plotted in the figure.

In running this test the target lens was mountedon a tripod and raised
some3 feet off the ground. It is believed that this target height above

the ground introduced significant effects from multipath propagation. These

effects may explain the sawtoothed appearance in areas of the plot of figure
10-I.

The major property of the data plot in figure 10-1 that generated interest

for further investigation was the standard deviation. A quick study of the

plot shows that the measurement error increases with increasing channel volt-

age. Just the opposite should occur. The estimate of signal value should
become more consistent as signal power increases. This inconsistency

prompted a lengthy investigation of the angle channel.

The investigation started with a second angle calibration test. This time

data sets were collected every 0.25 degrees for an angular interval from

-3 to +3 degrees in front of the radar. During the test the possibility

of multipath degrading the data was minimized by placing the target on the

ground. Figure 10-2 is the plot of the angle channel response from this
test.

The figure shows a shift between mechanical boresight (0.0 degrees on the

axis) and peak electrical response from the radar's angle channel. This

angular misalignment occurred when the radar was remounted on the van. As

long as the error is known it can be accounted for and subtracted from the
data.

In figure 10-2, the mean and standard deviation plotted at each angular
interval are calculated from a set of 100 samples of measurements taken

consecutively from the radar. Figure 10-3 shows the sample set from the

2 degree point of figure 10-2. The data points are plotted in the time
order in which they were taken from the system which is why the abscissa

is in seconds of time. From the figure it is obvious that the constancy

of the measurement is not good. Thinking that the error was the result of

inadequate signal power, additional measurements were done with 10 dB

more signal power. The results were only marginally better meaning the

error source is not limited power.

The follow-on troubleshooting centered on eliminating, systematically, por-

tions of the system to isolate the origin of the error. The radar front-end

through the video detectors was replaced by two high quality pulse genera-
tors. These two generators were externally triggered by the radar transmit

trigger and then their outputs added to yield a double pulse resembling a
radar "main bang" and a target at some range. Figure 10-4 shows an oscillo-

scope photograph taken of the output of the generator configuration.
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The signal shown in figure 10-4 became the basis for assessing the perform-

ance of the data acquisition system. While there are some line reflections

that are present, the distortions are not great. The sharp crisp rise and

fall times of the pulses greatly exceed the capability of the rest of the

system to resolve. The clean, constant baseline is more than adequate as

a reference. This signal was fed into both channels of the time expander
system and signal quality was established at different points in the data

acquisition chain.

Figure 10-5 shows the two channel output of the time expander board when

driven by the input signal shown in figure 10-4. There are bandwidth lim-

itations seen in the rise and fall times, but the baseline stability and

signal-to-noise ratio are excellent. The top trace in figure 10-5 is the sum

channel containing the range estimation. It is buffered through the matching
amplifier (fig. 9-1) before driving the right channel of the stereo audio

system of the VCR. It is also used as a reference to normalize the angle

channel response to achieve an angle voltage independent of range and target

size. The bottom trace in figure 10-5 is the difference channel output used

to derive the angle channel when differenced from the sum channel. The
resultant is the input to the left audio channel of the VCR.

Figure 10-6 is a photograph of the outputs of the amplifiers driving the VCR.
The top trace is the range channel. The uncertainties seen in the rise and
fall times of the bottom trace arise from time variances in the two waveforms

being differenced to form the normalized angle channel. Except for these

uncertainties, the shape of the target response is roughly the same as the

target pulse in the top trace.

Testing of the VCR effects on the waveforms showed that the recorder was not

adequate in its response to support the CAR radar effort. Its deficiencies

were two: low frequency noise on the order of 100 to 200 millivolts probably

from the IC's used and the effect of the ac-coupling on trying to read abso-
lute voltages. Figure 10-7 shows this latter phenomenon in particular. Of

interest in the figure are the bottom traces in each of the two photographs.
They are the angle channel outputs. The top photo is the return from a point

target at 75 feet in range (the target is just below the 2 volt symbolic in-

dicator). The bottom photo is the same target at 300 feet in range (the tar-
get is in the center of the trace). The zero volt baseline in each case is

the gridline just above the trace. Since the ac-coupling in the audio chan-

nel balances the area above and below the zero reference, the target at 75

feet has a greater apparent undershoot. This, plus the roughly 100 millivolt
noise on the baseline, forced the decision to eliminate the VCR until such

time as the angle channel calibration could be completed and verified.

Removal of the VCR forced a redesign Of the signai conditioner unit in figure
9-1 and it forced a move of the computer from the lab to the radar van.

These changes were accomplished and testing using pulse inputs to the time

expander boards was continued. The objective of the testing was to achieve
the usable angle channel response.
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The pulse configuration of figure 10-4 was retested with the VCR out of sys-

tem with the range and angle channel responses shown in figures 10-8 and
10-9, respectively. These are plots of the mean and standard deviation over

a sample set of 100 for each range and angle bin. It is encouraging to note
that the standard deviations are low and that apparently they do not increase

with signal power. They do increase in regions of transitions. This, plus

the low standard deviation at the measurement in the "center" of the target
pulse, represents a significant improvement in performance over what had been
seen earlier.

The angle measurement with the midpulse smallest standard deviation in figure

10-9 is associated with (or is the next A/D sampled after) range bin 53. The

time history of this angle bin is plotted in figure 10-10. The peak-to-peak

excursion of this measurement is roughly 100 millivolts. The improvement
over the measurements in figure 10-3 is approximately a factor of four in
voltage amplitude.

The next logical step in the testing was to increase the pulse width and the

next data set taken was for a target pulse 60 ns wide. Figure 10-11 shows

the angle channel response for this condition (the range response is similar

and not shown here). These are now two angle measurements within the target

return with low standard deviations. They are associated with range bins 53

and 55. Their time histories are plotted in figures 10-12 and 10-13, respec-

tively. Figure 10-12 shows a peak-to-peak signal of significantly less than

100 millivolts and obvious improvement over figure 10-10. Figure 10-13 is

obviously the best and represents a good estimate of the signal. This would
be usable angle data from which to calibrate the channel.

The end in improvement by increasing pulse width needed to be found and thus

the pulse width was increased from 60 to 70 ns. Fiugre 10-14 shows the angle
channel response to that pulse width. It is noted that there are three data

points within the target return that have low deviations on the measurements.

These are the measurements associated with range bins 53, 55, and 57. (The
range channel response is the same as the angle channel, but range will be

indicated by the signal exceeding some threshold so that absolute voltage
measurement is not required.) Figures 10-15, 10-16, and 10-17 show the time

history for the angle estimates of the targets. The error in bin 53 is ap-

proximately the same as seen in the 60 ns case and bin 55 shows improvement

over bin 53 as might be expected from the 60 ns case. Of particular interest
is that bin 57 really doesn't show any appreciable error reduction over bin

55. There really was no point in increasing pulse widths any further and
testing with the pulse generator was concluded.

The conclusions of the tests just discussed are that removal of the VCR was

necessary and that increasing the transmitted pulse widths was also neces-

sary. The first was necessary to maintain dc level in order to measure

absolute voltage with a single-ended A/D converter input. The second was

necessary to allow the limited-bandwidth, limited-sample rate system time
enough to estimate the angle voltage.

The radar RF portion and the data acquisition system were connected and the

transmitter modulator adjusted for a longer pulse width. The desired pulse
width was 70 ns, but a modulator width of approximately 55 ns turned out to
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be the hardware limit. The point target Luneburg lens was used to test this

configuration to see if angle channel response had been improved. Because of
inclement weather the radar van had to remain indoors and measurements were

made with the target placed outside the door and not on the original test

range. The clutter in this new environment was quite high and the results
presented here should be weighed against that fact. The system response in

the angle channel is shown in figure 10-18. The target is located at a range

of roughly 100 feet. Looking at the standard deviations it is seen that one

of two points at the peak of the target return should yield the best voltage
estimation. It so happens that the best estimation is in bin 23. A time

history plot of this measurement is shown in figure 10-19. The results

displayed here are encouraging also.

At this point in the system test, it appeared that a decent angle calibra-

tion could be accomplished with this modified configuration. Thus, when
the weather cleared and with the computer, plotter, and printer all mounted

inside the van, the system was moved back to the range. Here the angle

calibration sequence, as performed to generate figure 10-1, was repeated.

This time multipath was minimized by placing the point target on the ground.

Figure 10-20 is a plot of this calibration. The results and improvements of

modifying the radar system by eliminating the VCR and increasing the pulse
width can be seen by examining the standard deviation of each measurement.

Instead of the standard deviation increasing with increased signal as was

seen in figures 10-I and 10-2, the measurement error decreases and sta-
bilizes. This is the performance trend that is proper for this system.

Figure 10-20 also shows only one main response where three significant re-
sponses were noted in figure 10-1. In the earlier case the target had been
some 3 feet off the ground and in the case of figure 10-20, the target was

placed on the ground to minimize multipath. It is felt that the lowering of
the target put it beneath the illuminating beam in the transmit antenna for
the off-axis cases. The result is the single response noted around the zero

degree electrical boresight.

The shift between mechanical boresight and electrical boresight that was

shown in figure 10-2 is still present in this last calibration curve. It

is emphasized in figure 10-20 by the two abscissa axes that are plotted to
define the relationship between physical angle from the radar/vehicle to the

target and the radar angle channel electrical voltage. This combination

becomes the angle calibration for a point target.

The next section shows the effects of an extended target on this point target

calibration curve.

STATIC TESTS - EXTENDED TARGETS

After successfully achieving the point target calibration curve for the

angle channel, it was necessary to establish angle channel to a representa-

tive extended angle target. The target used was a 1977 midsized automobile

(MSA) supplied by the Department of Transportation for the test program. The
first test run was a static head-on test. The automobile was placed head-on

to the radar along the electrical boresight. A statistical sample set of
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radar response was taken and processed for mean and standard deviation of

the measurements. The car was then placed along the same LOS, but at a dif-

ferent range. Figures 10-21 through 10-25 are plots of the angle channel

responses for ranges of 50, 100, 150, 200, and 300 feet, respectively. Since

angle is determined by absolute voltage, a line has been drawn from the ordi-

nate to the peak voltage in the target return. The variation of these peaks
should be noted. Also, for this static case, it should be noted that the

variance of any one measurement set is at least on the order of the point

target case.

Figures 10-26 through 10-30 show the angle channel response for the same au-

tomobile over the same range interval, but this time the car is positioned

broadside to the radar electrical boresight. The peak voltage in the target
return is marked here also. Of interest is the appearance of one to two more

"targets". These are thought to be multibounce between the radar van and the

large broadside area of the automobile. These bounces are further masked by

the theoretical 2000-foot range of the radar (250 kHz PRF) and the roughly
500-foot processing range of the time expander board. In any event, the

radar would detect and try to process at least some of these multibounce,

false targets. And finally, in this set of figures, note the change in peak

voltage from figure to figure.

The peak target responses for the automobile in Figures 10-21 through 10-30

are summarized in figure 10-31. The curve in the figure is the point target
calibration curve from figure 10-20. Along the electrical boresight of this

calibration, arrows are plotted to show the voltages induced in the angle

channel when the automobile was on boresight. On the left of the peak are

the cases for the car head-on to the radar and on the right are the broadside

cases. On both sides the range from the radar to the automobile is indicated

for each test case (figs. 10-21 through 10-30).

It would have been ideal if the automobile had generated the same voltage on

electrical boresight for each orientation and for all ranges. If this volt-

age had also been equal to the point target peak (approximately 2 volts),
then the automobile would have the same radar cross-section as the point

target. Figure 10-31 shows results that are entirely different, however.

The voltage in the angle channel changes with automobile orientation and

range. It also changes in ways that are not predictable. This lack of con-

sistency is the result of the automobile being extended in angular size so

that it is not valid to try to describe its location by a single line-of-

sight angle. The monopulse angle estimating technique tries to make this

single angle description - and fails.

Figure 10-31 shows that the monopulse radar has trouble with the angular size
of the automobile even as far out as 300 feet. Unfortunately, this is within

the region of prime concern for collision avoidance and is the region where
angular precision is necessary in identifying collision cases. Based on

these results, one conclusion must be that the monopulse technique for angle
measurement is not proper for this application.

The results associated with figure 10-31 are the prime drivers for terminat-

ing the testing of this radar.
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DYNAMIC TESTS - EXTENDED TARGETS

Prior to the removal of the VCR from the data acquisition system, some trial

dynamic runs were made with the radar system to assess, in general, the end-

to-end operation of the system. The video tapes of these runs were retained

as archival and documentary with little thought of utilizing them in analysis
of system performance. At the end of the angle calibration trials, when the

VCR has been eliminated for the reasons given and the program had really

reached the terminating point, it was found that these tapes represented the

only history of dynamic response.

Review of these tapes has yielded useful information and insight into both

the range performance of the radar and into the angular response of the
system.

Ranqinq to Dynamic Tarqets

Test runs were made with the MSA approaching and driving away from the radar
at different speeds. Figure 10-32 shows the range channel response for the

automobile approaching at 10 miles per hour (mph), passing the radar on one

side, turning around and departing at 10 mph.

In the figure the MSA is detected approaching at roughly 500 feet and tracked

into some 50 or 60 feet where it passes from the radar field-of-view. The

automobile turns around and passes the radar again and is picked up by the
radar as it departs. It is tracked out to roughly 500 feet. The software

used to process the raw data tracked only the closest point of the car to

the radar, so that for any instant of time there is only one point plotted

to represent the automobile. There are points plotted along the abscissa or

zero range. These points denote no target was detected, but they also repre-
sent the radar data system keeping track of time. Except for the turnaround

interval, the most significant data d_opouts occur at roughly a time 56 sec-
onds and greater. No explanation for this is offered.

The range bin concept of the radar is noted in the figure by the groups of

consecutive range readings of the same value. If the next range reading is

different, it will be different by at least the range bin interval of approx-
imately 9 feet. If the data acquisition system could sample faster, this

range bin interval would be smaller.

Figure 10-33 shows the range versus time plot for the automobile approaching
the radar at 55 mph maximum. With the automobile speed this high, the limi-

ted sampling rate only allows one range reading per range bin in some cases.
The speed of 55 mph is probably close to the maximum velocity to be run

against the sample rate of this system. The first 4 to 5 seconds of this

run were at speeds of 55 mph. After that the driver began to slow the auto-
mobile for safety in passing on the narrow road.
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Anqle Response to Dynamic Tarqets

The response of the angle channel in these documentary tapes was reviewed

with some interesting results. In looking at this set of data it must be

remembered that correlation of the angle channel voltage with an absolute

angle is not possible. First, because the VCR is still in the string of

instrumentation, and second, in the case of the extended target, the system
response is too complicated. So the caveat on this information is that the

data sets represent trends in system response and not absolute, quantative
system response.

Further comments about the figures that follow are in order also. First,

these figures present channel voltage as a function of range to the target.
Both the angle channel and the range channel are shown. This is done be-

cause the angle channel voltage shown has been normalized to the range

channel voltage level. Understanding the angle channel response requires
knowledge of the status of the range channel at the same instant of time.

Finally, the figures represent the peak target voltage at the indicated
range. These peak voltages were sketched by hand from the face of a Tek-

tronix 7633 storage oscilloscope. Many, many reruns of portions of tests

were required in order to assimilate a sketch of a single test run. In some
cases the frequency of voltage fluctuation was too fast to document and in

these cases, the maximum excursion of voltage was sketched as accurately as
possible. Other details relating to a specific test case are discussed with

the appropriate figure.

Figure 10-34 shows the radar system response recorded at the point target,
laying on the ground, was approached at roughly 10 mph. The baseline of the

VCR voltage should be noted in both the range channel response and the angle
channel. The actual channel voltage at any range is algebraic substraction

of the baseline voltage from the peak voltage. The range voltage is seen to

increase as the target is approached, until ranges of less than 150 feet

occur. Past this interval the voltage fluctuates as seen. Explanation of

this fluctuation is not offered though antenna pattern is probably the cause.

The angle channel response should have remained fairly constant since this

has a straight approach and stop. Some degree of consistency is seen in the
interval of 100 to 300 feet.

OF more interest than the details of figure 10-34 is the comparison of that

performance with the point target against the extended target. Figure 10-35

shows the latter case. Here the MSA is approached from the rear at 10 mph.
The curves as plotted stop at roughly 75 feet range because the MSA was

passed on the right. Up until that range the automobile was in the direct

path of the radar. In general, the radar range channel response was increas-

ing as in the point target case. Fluctuations started at roughly 100 feet as

before, but perhaps delayed because the extended target remains longer in the

beam width of the antenna. The angle channel response is uncomplicated
in appearance and relatively constant from roughly 300 to 100 feet; but it

should be because the angle to the target was essentially constant.
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The last two cases considered are driving by the point target at I0 mph
and driving by the MSAat 10 mph. Figure 10-36 shows the point target
case. Superimposedon the abscissa of the range channel response is an
estimate of the line-of-sight angle to the point target at specific ranges.
The performance of both the range channel and the angle channel seems, in
general, to be quite reasonable with similarities, appropriately, to
characteristics noted in figures 10-34 and 10-35.

Figure 10-37 shows radar system performance whendriving past the MSAat
10 mph. While there is sufficient signal energy to detect the target in
the range channel and perform the ranging function, the angle channel has
completely degraded. The frequency of the fluctuations seen in the angle
channel are far too rapid to be correctly represented in the figure. The
maximumexcursions of the signal are reasonably reproduced, however.

Looking at the angle channel, there are instances where the channel voltage
actually goes below the VCRbaseline. This can occur only if the raw angle
voltage is higher than the raw range voltage. For point targets without
multipath this cannot happen. However, the figure showsthat for the mono-
pulse radar attempting to process the extended target, it does happen and
with disastrous results.
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APPENDIX

TEST PLAN FOR INITIAL TESTING

OF THE

CRASH AVOIDANCE RADAR (CAR)
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This short paper describes what is felt to be the initial tests

required to be performed when the in-house CAR system is first brought
on-line. These tests will define the end-to-end transfer functions and

first order limitations of the system. The system in this case

includes the RF, time expansion sampling, data acquisition and data

reduction subsystems. Some parameters which will be defined in these

tests are the conversion constants necessary to complete the end-to-end
data flow.

The preliminary tests are shown in Table I and show both the transfer

functions and the basic dynamic response characteristics needing

definition. The results will be the end-to-end capability and response

of the system. An important aspect of this test not emphaized in the

table is the system ability to detect mimimum dynamics, i.e. range

rates and angle rates near zero.

Table 2 shows a list of basic situational tests. The criteria of

avoiding collisions in all these situations are well known. That is

not the purpose here. The purpose here is to establish the ability of

this CAR system to react appropriately to each of these cases. Once

this information is gathered and understood more exotic tests can be

formulated. That will be the basis for a test plan for advanced

testing.
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TRANSFER FUNCTIONS:

i. Range Channel

TABLE 10-1.- PRELIMINARY TESTS

• Accuracy

• Range resolution

• Extended target response
• Magnitude versus cross-section

2. Angle Channel

• System response (volts/degree)

• Accuracy

• Useful angular range
• Resolution

• Extended target response

RESPONSE TO DYNAMIC SITUATIONS:

I. Range rate

• Zero to 120 mph at zero angle rate

2. Angle range

• Zero to TBD degrees/seconds at zero range rate

3. Combined range rate and angle rate at TBD values

TABLE 10-2.- BASIC SITUATIONAL TESTS

1. Roadside

• Angle rate response is prime concern.

• Absolute angle accuracy is secondary concern.

2. Head-on

• Maximum range is prime concern.

• Angle rate response is secondary concern.

3. Follow-after

• Range rate response is prime concern.

• Absolute range is secondary concern.

4. Angular-collision

• Angle rate response is prime concern.

• Absolute range is secondary concern.
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SECTION 11

CONCLUSIONS AND RECOMMENDATIONS

Testing of the Phase 1 radar at the Johnson Space Center was intentionally
terminated prior to completion of the previously planned investigations. The

overriding cause terminating the tests was the effects of the extended target
on radar performance.

APPLICABILITY OF MONOPULSE RADAR

The history of successful use of monopu]se radar is long and noteworthy. It

is, however, a point target tracking radar system and a single target track-

ing system. Of course, large targets have been tracked, but at ranges where

their included angle classifies them as a good point target approximation.

The tests done on the Phase 1 radar also displayed good point target tracking

capability when used against the Luneburg lens. It also showed improving
performance as the included angle of the extended targets became smaller with

increasing range.

It is felt by considering these tests that the monopulse radar will not have

adequate performance to handle the collision avoidance radar case, however.

The small ranges and large extended targets are just beyond the capability of

the technique. Therefore, it is concluded that the monopulse radar approach

is not readily adaptable to this problem. Another technique designed to

handle extended targets must be implemented. Additional investments into the

monopulse technique do not appear warranted at this time.

SUGGESTED ALTERNATIVE

A first approach in coping with this extended target environment is to make

all decisions yes or no. In other words, don't make an absolute energy level

measurement to estimate a parameter. In the monopulse radar the range chan-

nel already was doing this, i.e., if the sum channel energy exceeds a prede-
termined threshold, the answer is yes to target presence. Time delay then

determined range. There was no dependence on absolute energy. This same
type of approach should be implemented in the angle channel.

The threshold approach is applicable if a narrow beam scanning antenna is

implemented. In this system the antenna beam will be scanned over some

larger angular interval and for each beam position a ranging pulse will be

transmitted. If enough energy comes back from a target to exceed threshold,
the range to the target is calculated from the time delay (just as in the

Phase 1 system), but now the angle is deduced from the beam position at the

time of transmission. If the target is large compared to the antenna beam
width, then target detects will be seen in adjacent beam positions. The

target actually is "painted" by the scanning beam and this new radar will

have information concerning both target location and size.
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This is the alternative approach recommended for any follow-on effort in CAR

radar development at the Johnson Space Center. While some suspicions exist
now as to the implementation of this new approach, e.g., very narrow beam,

electronically scanned, millimeter wave, etc., the following steps are
recommended as the proper course of development:

. Perform computer simulations of scenarios to establish performance re-

quirements, i.e., time available to measure and warn, parameter dynamic
range (maximum angular change, range rate change), etc.

2. Convert the results of item I to system requirements, i.e., repetition
rate, antenna beam width, scan rates, data rates, etc.

3. Convert item 2 into critical subsystem development and pursue development
to completion, e.g., the antenna and data processor.

4. With critical subsystem performance known (or estimated based on better
predictions), complete specifications for an advanced CAR radar.

5. Implement and test the advanced system.

It is felt that the scanning beam system in the extended target environment
is the best hope of success in developing a radar that can function outside

of the one-lane radar. No wavelength is implied as proper and all are can-

didate. Proper development as outlined above must be followed to ensure
success in minimum time.
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SECTION12
SUMMARY

PRELIMINARY DESIGN REQUIREMENTS ASSESSMENTS

A large amount of collision avoidance radar work has occurred since about
1970. Much of the effort was conducted by separate independent labs such

as RCA, Rashid, CA Research, and Bendix. Unfortunately, only one-dimen-

sional, non-angle sensing radars were researched and developed to any ex-

tent. The attendant problems with these simpler non-angle sensing radars

include high false alarm rates, lack of multiple target detection and track-

ing, and unacceptably narrow coverage areas. In addition, these non-angle

sensing radars cannot compute target path trajectories, which means that a

target crossing the radar beam will often trigger an alarm even though it
is not on a collision trajectory. This effect primarily contributes to the

false alarm problem. Angle tracking can be used to alleviate these false

alarms. There are systems under development to provide some level of angle
tracking, such as the Nissan microwave radar. However, commercialization has

not occurred, and we are suspicious that the Nissan system may suffer similar

disturbances which affected our phase monopulse approach, i.e., extended

target and multipath interference.

The operating environment for a collision avoidance radar is complicated

by the multitude of radar reflecting objects, some of which are collision
hazards and some of which are not. A radar that can sense and track all

these objects and predict a possible collision between the radar and any of
these objects appears to be the best approach. This is in contrast to the

previously investigated simpler, non-angle sensing, single target tracking
radars.

TRAFFIC ACCIDENT REPORT ANALYSES' CONCLUSIONS

Traffic accident data could be very useful for determining system specifica-

tions for a collision avoidance radar. Unfortunately, sufficiently detailed

traffic accident data are not yet available to support the subtler system

specification requirements such as beam width as determined from the crash

distributions for each degree of angle off of boresight. Only general system
characteristics can be deduced from currently available data, which for

example, only gives frequency of accidents occurring within each 30 degree
sector.

DATA COLLECTION RADAR SYSTEM (RF/IF)

A data collection radar system was designed and fabricated. The emphasis was

placed on system specifications which seemed most likely to be used in later

developmental models if the approach taken should have proved to be viable.

Major features of this system included 24 GHz narrow pulsed transmitter, dual

channel receiver, logarithmic IF amplification, large receiver dynamic range,

and moderately low receiver noise figure.
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Design values for peak transmitter power were not able to be attained within
the alloted time; this necessitated a change in antenna componentsto provide
compensation. In addition, a higher gain antenna system was recognized to be
required to provide adequate signal levels for the angle channel.

PREDICTEDRESPONSEFORDATACOLLECTIONRADAR

An analysis was performed on the radar design implemented for data collec-
tion. Predicted (ideal) response patterns were generated for the sumand
angle channels. The normalized angle channel response was generated for
the standard gain horn array as well as the slotted waveguide array.

WEATHEREFFECTSONRADARPERFORMANCE

A study was performed addressing nine areas of concern for radar design and
performance vis-a-vis atmospheric conditions. The areas considered were
(1) effect of index of refraction changes, (2) transmitter modulation type
effects, (3) antenna polarization effects on precipitation cancelling,
(4) gaseous attenuation, and (5) rain, fog, snow, hail, and sandstorm/dust-
storm interference to radar operation. Heavy rates of rain or partially
melted hail/snow could cause disruptions in radar operation. The effect
of slushly accumulations over the antenna face could be investigated at
somepoint.

DATAACQUISITIONSYSTEM

A data acquistion system was assembled for collecting radar receiver output
data. This system comprises time sampler boards used for bandwidth compres-
sion, analog amplifiers, stereo video cassette recorder and camera interface
timing boards, analog-to-digital converters, microcomputer plus plotters,
printers, etc., and special software. This system represents a significant
capability given the time allotted. A bandwidth limitation of less than
20 KHz is a problem with this system. It will be upgraded for any future
data acquisition/analysis activities.

SYSTEMSTEST

A series of static tests were performed using a special radar reflector and
a midsized auto (1977 Granada). A designated and marked off 600-foot con-
crete road was the test site. Limited dynamic testing was performed using
the entire 2400-foot road. After encountering several problems with the data
collection system, changes were madeto alleviate the disturbances and to
allow collecting meaningful data. Responseplots were generated from the
collected data.
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The tests revealed that multipath effects are present which disturb target
illumination and return signal reception. In addition, the extended, or
large when comparedto the far field distance of the target (2 D2/_), * nature
of the midsized auto disrupts the behavior of the angle sensing channel. The
angle sensing capability of the radar is degraded to an unusable extent due
to these effects.

CONCLUSIONSANDRECOMMENDATIONS

Based on systems tests and discussions held subsequently with other research-
ers in this field, it is felt that a modified approach to the collision
avoidance problem is required. While the monopulse is in general appropriate
to far field tracking radar problems, it appears to be incapable of providing
the higher quality angle information required by us.

It is recommendedthat additional effort be expended to develop more exten-
sive radar parameter requirements, then to redesign a radar approach based on
these requirements. The insight and expertise gained during this project
effort being reported on nowwill prove very valuable for future efforts.

RADIATIONHAZARDSCONSIDERATIONSFORTHECOLLISIONAVOIDANCERADARSYSTEM

A study was performed addressing the thermal effects of microwave exposure
due to one or more radar systems. Microwave levels for a typical candidate
radar implementation were considered. The expected levels due to one radar's
radiation were calculated for the antenna aperture to well into the far
field. Multiple radiator configurations were proposed, and their effects
were calculated using worst case values which arise from overly ideal assump-
tions regarding radiated power efficiency, phase coherency, and spatial sum-
mation. The current U.S. standard is not exceeded nor is a more strict pro-
posed U.S. standard. The conservative U.S.S.R. standard maximumlevels are
only exceeded in a few, unlikely situations which are based on overly ideal
propagation conditions.

MODELINGANDACCURACYCONSIDERATIONS

A report was prepared addressing decision logic for collision trajectory
models. Items addressed included vehicular minimumstopping distances,
equations of vehicle motion, and collision detection logic.

*where D = largest dimension of target and _ = .49 inches
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